mirror of
https://github.com/hwchase17/langchain
synced 2024-11-08 07:10:35 +00:00
87e502c6bc
Co-authored-by: jacoblee93 <jacoblee93@gmail.com> Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
271 lines
7.5 KiB
Plaintext
271 lines
7.5 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Bash chain\n",
|
|
"This notebook showcases using LLMs and a bash process to perform simple filesystem commands."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 9,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"\n",
|
|
"\n",
|
|
"\u001b[1m> Entering new LLMBashChain chain...\u001b[0m\n",
|
|
"Please write a bash script that prints 'Hello World' to the console.\u001b[32;1m\u001b[1;3m\n",
|
|
"\n",
|
|
"```bash\n",
|
|
"echo \"Hello World\"\n",
|
|
"```\u001b[0m\n",
|
|
"Code: \u001b[33;1m\u001b[1;3m['echo \"Hello World\"']\u001b[0m\n",
|
|
"Answer: \u001b[33;1m\u001b[1;3mHello World\n",
|
|
"\u001b[0m\n",
|
|
"\u001b[1m> Finished chain.\u001b[0m\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"'Hello World\\n'"
|
|
]
|
|
},
|
|
"execution_count": 9,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"from langchain.chains import LLMBashChain\n",
|
|
"from langchain.llms import OpenAI\n",
|
|
"\n",
|
|
"llm = OpenAI(temperature=0)\n",
|
|
"\n",
|
|
"text = \"Please write a bash script that prints 'Hello World' to the console.\"\n",
|
|
"\n",
|
|
"bash_chain = LLMBashChain.from_llm(llm, verbose=True)\n",
|
|
"\n",
|
|
"bash_chain.run(text)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Customize Prompt\n",
|
|
"You can also customize the prompt that is used. Here is an example prompting to avoid using the 'echo' utility"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 10,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.prompts.prompt import PromptTemplate\n",
|
|
"from langchain.chains.llm_bash.prompt import BashOutputParser\n",
|
|
"\n",
|
|
"_PROMPT_TEMPLATE = \"\"\"If someone asks you to perform a task, your job is to come up with a series of bash commands that will perform the task. There is no need to put \"#!/bin/bash\" in your answer. Make sure to reason step by step, using this format:\n",
|
|
"Question: \"copy the files in the directory named 'target' into a new directory at the same level as target called 'myNewDirectory'\"\n",
|
|
"I need to take the following actions:\n",
|
|
"- List all files in the directory\n",
|
|
"- Create a new directory\n",
|
|
"- Copy the files from the first directory into the second directory\n",
|
|
"```bash\n",
|
|
"ls\n",
|
|
"mkdir myNewDirectory\n",
|
|
"cp -r target/* myNewDirectory\n",
|
|
"```\n",
|
|
"\n",
|
|
"Do not use 'echo' when writing the script.\n",
|
|
"\n",
|
|
"That is the format. Begin!\n",
|
|
"Question: {question}\"\"\"\n",
|
|
"\n",
|
|
"PROMPT = PromptTemplate(\n",
|
|
" input_variables=[\"question\"],\n",
|
|
" template=_PROMPT_TEMPLATE,\n",
|
|
" output_parser=BashOutputParser(),\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 11,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"\n",
|
|
"\n",
|
|
"\u001b[1m> Entering new LLMBashChain chain...\u001b[0m\n",
|
|
"Please write a bash script that prints 'Hello World' to the console.\u001b[32;1m\u001b[1;3m\n",
|
|
"\n",
|
|
"```bash\n",
|
|
"printf \"Hello World\\n\"\n",
|
|
"```\u001b[0m\n",
|
|
"Code: \u001b[33;1m\u001b[1;3m['printf \"Hello World\\\\n\"']\u001b[0m\n",
|
|
"Answer: \u001b[33;1m\u001b[1;3mHello World\n",
|
|
"\u001b[0m\n",
|
|
"\u001b[1m> Finished chain.\u001b[0m\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"'Hello World\\n'"
|
|
]
|
|
},
|
|
"execution_count": 11,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"bash_chain = LLMBashChain.from_llm(llm, prompt=PROMPT, verbose=True)\n",
|
|
"\n",
|
|
"text = \"Please write a bash script that prints 'Hello World' to the console.\"\n",
|
|
"\n",
|
|
"bash_chain.run(text)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Persistent Terminal\n",
|
|
"\n",
|
|
"By default, the chain will run in a separate subprocess each time it is called. This behavior can be changed by instantiating with a persistent bash process."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 12,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"\n",
|
|
"\n",
|
|
"\u001b[1m> Entering new LLMBashChain chain...\u001b[0m\n",
|
|
"List the current directory then move up a level.\u001b[32;1m\u001b[1;3m\n",
|
|
"\n",
|
|
"```bash\n",
|
|
"ls\n",
|
|
"cd ..\n",
|
|
"```\u001b[0m\n",
|
|
"Code: \u001b[33;1m\u001b[1;3m['ls', 'cd ..']\u001b[0m\n",
|
|
"Answer: \u001b[33;1m\u001b[1;3mapi.html\t\t\tllm_summarization_checker.html\n",
|
|
"constitutional_chain.html\tmoderation.html\n",
|
|
"llm_bash.html\t\t\topenai_openapi.yaml\n",
|
|
"llm_checker.html\t\topenapi.html\n",
|
|
"llm_math.html\t\t\tpal.html\n",
|
|
"llm_requests.html\t\tsqlite.html\u001b[0m\n",
|
|
"\u001b[1m> Finished chain.\u001b[0m\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"'api.html\\t\\t\\tllm_summarization_checker.html\\r\\nconstitutional_chain.html\\tmoderation.html\\r\\nllm_bash.html\\t\\t\\topenai_openapi.yaml\\r\\nllm_checker.html\\t\\topenapi.html\\r\\nllm_math.html\\t\\t\\tpal.html\\r\\nllm_requests.html\\t\\tsqlite.html'"
|
|
]
|
|
},
|
|
"execution_count": 12,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"from langchain.utilities.bash import BashProcess\n",
|
|
"\n",
|
|
"\n",
|
|
"persistent_process = BashProcess(persistent=True)\n",
|
|
"bash_chain = LLMBashChain.from_llm(llm, bash_process=persistent_process, verbose=True)\n",
|
|
"\n",
|
|
"text = \"List the current directory then move up a level.\"\n",
|
|
"\n",
|
|
"bash_chain.run(text)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 13,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"\n",
|
|
"\n",
|
|
"\u001b[1m> Entering new LLMBashChain chain...\u001b[0m\n",
|
|
"List the current directory then move up a level.\u001b[32;1m\u001b[1;3m\n",
|
|
"\n",
|
|
"```bash\n",
|
|
"ls\n",
|
|
"cd ..\n",
|
|
"```\u001b[0m\n",
|
|
"Code: \u001b[33;1m\u001b[1;3m['ls', 'cd ..']\u001b[0m\n",
|
|
"Answer: \u001b[33;1m\u001b[1;3mexamples\t\tgetting_started.html\tindex_examples\n",
|
|
"generic\t\t\thow_to_guides.rst\u001b[0m\n",
|
|
"\u001b[1m> Finished chain.\u001b[0m\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"'examples\\t\\tgetting_started.html\\tindex_examples\\r\\ngeneric\\t\\t\\thow_to_guides.rst'"
|
|
]
|
|
},
|
|
"execution_count": 13,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"# Run the same command again and see that the state is maintained between calls\n",
|
|
"bash_chain.run(text)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.11.3"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 4
|
|
}
|