mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
2eeaccf01c
Co-authored-by: Jiří Moravčík <jiri.moravcik@gmail.com>
176 lines
4.9 KiB
Plaintext
176 lines
4.9 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Apify Dataset\n",
|
|
"\n",
|
|
"This notebook shows how to load Apify datasets to LangChain.\n",
|
|
"\n",
|
|
"[Apify Dataset](https://docs.apify.com/platform/storage/dataset) is a scaleable append-only storage with sequential access built for storing structured web scraping results, such as a list of products or Google SERPs, and then export them to various formats like JSON, CSV, or Excel. Datasets are mainly used to save results of [Apify Actors](https://apify.com/store)—serverless cloud programs for varius web scraping, crawling, and data extraction use cases.\n",
|
|
"\n",
|
|
"## Prerequisites\n",
|
|
"\n",
|
|
"You need to have an existing dataset on the Apify platform. If you don't have one, please first check out [this notebook](../../../agents/tools/examples/apify.ipynb) on how to use Apify to extract content from documentation, knowledge bases, help centers, or blogs."
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"First, import `ApifyDatasetLoader` into your source code:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.document_loaders import ApifyDatasetLoader\n",
|
|
"from langchain.document_loaders.base import Document"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Then provide a function that maps Apify dataset record fields to LangChain `Document` format.\n",
|
|
"\n",
|
|
"For example, if your dataset items are structured like this:\n",
|
|
"\n",
|
|
"```json\n",
|
|
"{\n",
|
|
" \"url\": \"https://apify.com\",\n",
|
|
" \"text\": \"Apify is the best web scraping and automation platform.\"\n",
|
|
"}\n",
|
|
"```\n",
|
|
"\n",
|
|
"The mapping function in the code below will convert them to LangChain `Document` format, so that you can use them further with any LLM model (e.g. for question answering)."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"loader = ApifyDatasetLoader(\n",
|
|
" dataset_id=\"your-dataset-id\",\n",
|
|
" dataset_mapping_function=lambda dataset_item: Document(\n",
|
|
" page_content=dataset_item[\"text\"], metadata={\"source\": dataset_item[\"url\"]}\n",
|
|
" ),\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"data = loader.load()"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## An example with question answering\n",
|
|
"\n",
|
|
"In this example, we use data from a dataset to answer a question."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.docstore.document import Document\n",
|
|
"from langchain.document_loaders import ApifyDatasetLoader\n",
|
|
"from langchain.indexes import VectorstoreIndexCreator"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"loader = ApifyDatasetLoader(\n",
|
|
" dataset_id=\"your-dataset-id\",\n",
|
|
" dataset_mapping_function=lambda item: Document(\n",
|
|
" page_content=item[\"text\"] or \"\", metadata={\"source\": item[\"url\"]}\n",
|
|
" ),\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"index = VectorstoreIndexCreator().from_loaders([loader])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"query = \"What is Apify?\"\n",
|
|
"result = index.query_with_sources(query)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
" Apify is a platform for developing, running, and sharing serverless cloud programs. It enables users to create web scraping and automation tools and publish them on the Apify platform.\n",
|
|
"\n",
|
|
"https://docs.apify.com/platform/actors, https://docs.apify.com/platform/actors/running/actors-in-store, https://docs.apify.com/platform/security, https://docs.apify.com/platform/actors/examples\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"print(result[\"answer\"])\n",
|
|
"print(result[\"sources\"])"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.9.16"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|