langchain/libs/standard-tests/langchain_standard_tests/integration_tests/chat_models.py
2024-06-06 12:11:52 -04:00

283 lines
9.9 KiB
Python

import json
from abc import ABC, abstractmethod
from typing import Type
import pytest
from langchain_core.language_models import BaseChatModel
from langchain_core.messages import AIMessage, AIMessageChunk, HumanMessage, ToolMessage
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.tools import tool
class Person(BaseModel):
name: str = Field(..., description="The name of the person.")
age: int = Field(..., description="The age of the person.")
@tool
def my_adder_tool(a: int, b: int) -> int:
"""Takes two integers, a and b, and returns their sum."""
return a + b
class ChatModelIntegrationTests(ABC):
@abstractmethod
@pytest.fixture
def chat_model_class(self) -> Type[BaseChatModel]:
...
@pytest.fixture
def chat_model_params(self) -> dict:
return {}
@pytest.fixture
def chat_model_has_tool_calling(
self, chat_model_class: Type[BaseChatModel]
) -> bool:
return chat_model_class.bind_tools is not BaseChatModel.bind_tools
@pytest.fixture
def chat_model_has_structured_output(
self, chat_model_class: Type[BaseChatModel]
) -> bool:
return (
chat_model_class.with_structured_output
is not BaseChatModel.with_structured_output
)
def test_invoke(
self, chat_model_class: Type[BaseChatModel], chat_model_params: dict
) -> None:
model = chat_model_class(**chat_model_params)
result = model.invoke("Hello")
assert result is not None
assert isinstance(result, AIMessage)
assert isinstance(result.content, str)
assert len(result.content) > 0
async def test_ainvoke(
self, chat_model_class: Type[BaseChatModel], chat_model_params: dict
) -> None:
model = chat_model_class(**chat_model_params)
result = await model.ainvoke("Hello")
assert result is not None
assert isinstance(result, AIMessage)
assert isinstance(result.content, str)
assert len(result.content) > 0
def test_stream(
self, chat_model_class: Type[BaseChatModel], chat_model_params: dict
) -> None:
model = chat_model_class(**chat_model_params)
num_tokens = 0
for token in model.stream("Hello"):
assert token is not None
assert isinstance(token, AIMessageChunk)
assert isinstance(token.content, str)
num_tokens += len(token.content)
assert num_tokens > 0
async def test_astream(
self, chat_model_class: Type[BaseChatModel], chat_model_params: dict
) -> None:
model = chat_model_class(**chat_model_params)
num_tokens = 0
async for token in model.astream("Hello"):
assert token is not None
assert isinstance(token, AIMessageChunk)
assert isinstance(token.content, str)
num_tokens += len(token.content)
assert num_tokens > 0
def test_batch(
self, chat_model_class: Type[BaseChatModel], chat_model_params: dict
) -> None:
model = chat_model_class(**chat_model_params)
batch_results = model.batch(["Hello", "Hey"])
assert batch_results is not None
assert isinstance(batch_results, list)
assert len(batch_results) == 2
for result in batch_results:
assert result is not None
assert isinstance(result, AIMessage)
assert isinstance(result.content, str)
assert len(result.content) > 0
async def test_abatch(
self, chat_model_class: Type[BaseChatModel], chat_model_params: dict
) -> None:
model = chat_model_class(**chat_model_params)
batch_results = await model.abatch(["Hello", "Hey"])
assert batch_results is not None
assert isinstance(batch_results, list)
assert len(batch_results) == 2
for result in batch_results:
assert result is not None
assert isinstance(result, AIMessage)
assert isinstance(result.content, str)
assert len(result.content) > 0
def test_conversation(
self, chat_model_class: Type[BaseChatModel], chat_model_params: dict
) -> None:
model = chat_model_class(**chat_model_params)
messages = [
HumanMessage(content="hello"),
AIMessage(content="hello"),
HumanMessage(content="how are you"),
]
result = model.invoke(messages)
assert result is not None
assert isinstance(result, AIMessage)
assert isinstance(result.content, str)
assert len(result.content) > 0
def test_usage_metadata(
self, chat_model_class: Type[BaseChatModel], chat_model_params: dict
) -> None:
model = chat_model_class(**chat_model_params)
result = model.invoke("Hello")
assert result is not None
assert isinstance(result, AIMessage)
assert result.usage_metadata is not None
assert isinstance(result.usage_metadata["input_tokens"], int)
assert isinstance(result.usage_metadata["output_tokens"], int)
assert isinstance(result.usage_metadata["total_tokens"], int)
def test_stop_sequence(
self, chat_model_class: Type[BaseChatModel], chat_model_params: dict
) -> None:
model = chat_model_class(**chat_model_params)
result = model.invoke("hi", stop=["you"])
assert isinstance(result, AIMessage)
model = chat_model_class(**chat_model_params, stop=["you"])
result = model.invoke("hi")
assert isinstance(result, AIMessage)
def test_tool_message_histories_string_content(
self,
chat_model_class: Type[BaseChatModel],
chat_model_params: dict,
chat_model_has_tool_calling: bool,
) -> None:
"""
Test that message histories are compatible with string tool contents
(e.g. OpenAI).
"""
if not chat_model_has_tool_calling:
pytest.skip("Test requires tool calling.")
model = chat_model_class(**chat_model_params)
model_with_tools = model.bind_tools([my_adder_tool])
function_name = "my_adder_tool"
function_args = {"a": "1", "b": "2"}
messages_string_content = [
HumanMessage(content="What is 1 + 2"),
# string content (e.g. OpenAI)
AIMessage(
content="",
tool_calls=[
{
"name": function_name,
"args": function_args,
"id": "abc123",
},
],
),
ToolMessage(
name=function_name,
content=json.dumps({"result": 3}),
tool_call_id="abc123",
),
]
result_string_content = model_with_tools.invoke(messages_string_content)
assert isinstance(result_string_content, AIMessage)
def test_tool_message_histories_list_content(
self,
chat_model_class: Type[BaseChatModel],
chat_model_params: dict,
chat_model_has_tool_calling: bool,
) -> None:
"""
Test that message histories are compatible with list tool contents
(e.g. Anthropic).
"""
if not chat_model_has_tool_calling:
pytest.skip("Test requires tool calling.")
model = chat_model_class(**chat_model_params)
model_with_tools = model.bind_tools([my_adder_tool])
function_name = "my_adder_tool"
function_args = {"a": 1, "b": 2}
messages_list_content = [
HumanMessage(content="What is 1 + 2"),
# List content (e.g., Anthropic)
AIMessage(
content=[
{"type": "text", "text": "some text"},
{
"type": "tool_use",
"id": "abc123",
"name": function_name,
"input": function_args,
},
],
tool_calls=[
{
"name": function_name,
"args": function_args,
"id": "abc123",
},
],
),
ToolMessage(
name=function_name,
content=json.dumps({"result": 3}),
tool_call_id="abc123",
),
]
result_list_content = model_with_tools.invoke(messages_list_content)
assert isinstance(result_list_content, AIMessage)
def test_structured_few_shot_examples(
self,
chat_model_class: Type[BaseChatModel],
chat_model_params: dict,
chat_model_has_tool_calling: bool,
) -> None:
"""
Test that model can process few-shot examples with tool calls.
"""
if not chat_model_has_tool_calling:
pytest.skip("Test requires tool calling.")
model = chat_model_class(**chat_model_params)
model_with_tools = model.bind_tools([my_adder_tool])
function_name = "my_adder_tool"
function_args = {"a": 1, "b": 2}
function_result = json.dumps({"result": 3})
messages_string_content = [
HumanMessage(content="What is 1 + 2"),
AIMessage(
content="",
tool_calls=[
{
"name": function_name,
"args": function_args,
"id": "abc123",
},
],
),
ToolMessage(
name=function_name,
content=function_result,
tool_call_id="abc123",
),
AIMessage(content=function_result),
HumanMessage(content="What is 3 + 4"),
]
result_string_content = model_with_tools.invoke(messages_string_content)
assert isinstance(result_string_content, AIMessage)