langchain/libs/partners/mistralai
2024-06-11 15:34:50 -04:00
..
langchain_mistralai mistral[patch]: add usage_metadata to (a)invoke and (a)stream (#22781) 2024-06-11 15:34:50 -04:00
scripts infra: add print rule to ruff (#16221) 2024-02-09 16:13:30 -08:00
tests mistral[patch]: add usage_metadata to (a)invoke and (a)stream (#22781) 2024-06-11 15:34:50 -04:00
.gitignore
LICENSE
Makefile
poetry.lock mistral[patch]: add usage_metadata to (a)invoke and (a)stream (#22781) 2024-06-11 15:34:50 -04:00
pyproject.toml mistral[patch]: add usage_metadata to (a)invoke and (a)stream (#22781) 2024-06-11 15:34:50 -04:00
README.md mistralai[minor]: Add embeddings (#15282) 2024-01-16 17:48:37 -08:00

langchain-mistralai

This package contains the LangChain integrations for MistralAI through their mistralai SDK.

Installation

pip install -U langchain-mistralai

Chat Models

This package contains the ChatMistralAI class, which is the recommended way to interface with MistralAI models.

To use, install the requirements, and configure your environment.

export MISTRAL_API_KEY=your-api-key

Then initialize

from langchain_core.messages import HumanMessage
from langchain_mistralai.chat_models import ChatMistralAI

chat = ChatMistralAI(model="mistral-small")
messages = [HumanMessage(content="say a brief hello")]
chat.invoke(messages)

ChatMistralAI also supports async and streaming functionality:

# For async...
await chat.ainvoke(messages)

# For streaming...
for chunk in chat.stream(messages):
    print(chunk.content, end="", flush=True)

Embeddings

With MistralAIEmbeddings, you can directly use the default model 'mistral-embed', or set a different one if available.

Choose model

embedding.model = 'mistral-embed'

Simple query

res_query = embedding.embed_query("The test information")

Documents

res_document = embedding.embed_documents(["test1", "another test"])