mirror of
https://github.com/hwchase17/langchain
synced 2024-11-08 07:10:35 +00:00
9dd7cbb447
<!-- Thank you for contributing to LangChain! Please title your PR "partners: google-genai", Replace this entire comment with: - **Description:** : added logic for method get_num_tokens() for ChatGoogleGenerativeAI , GoogleGenerativeAI, - **Issue:** : https://github.com/langchain-ai/langchain/issues/16204, - **Dependencies:** : None, - **Twitter handle:** @Aditya_Rane --------- Co-authored-by: adityarane@google.com <adityarane@google.com> Co-authored-by: Leonid Kuligin <lkuligin@yandex.ru>
638 lines
22 KiB
Python
638 lines
22 KiB
Python
from __future__ import annotations
|
|
|
|
import base64
|
|
import logging
|
|
import os
|
|
from io import BytesIO
|
|
from typing import (
|
|
Any,
|
|
AsyncIterator,
|
|
Callable,
|
|
Dict,
|
|
Iterator,
|
|
List,
|
|
Mapping,
|
|
Optional,
|
|
Sequence,
|
|
Tuple,
|
|
Type,
|
|
Union,
|
|
cast,
|
|
)
|
|
from urllib.parse import urlparse
|
|
|
|
import google.api_core
|
|
|
|
# TODO: remove ignore once the google package is published with types
|
|
import google.generativeai as genai # type: ignore[import]
|
|
import requests
|
|
from langchain_core.callbacks.manager import (
|
|
AsyncCallbackManagerForLLMRun,
|
|
CallbackManagerForLLMRun,
|
|
)
|
|
from langchain_core.language_models.chat_models import BaseChatModel
|
|
from langchain_core.messages import (
|
|
AIMessage,
|
|
AIMessageChunk,
|
|
BaseMessage,
|
|
ChatMessage,
|
|
ChatMessageChunk,
|
|
HumanMessage,
|
|
HumanMessageChunk,
|
|
SystemMessage,
|
|
)
|
|
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
|
from langchain_core.pydantic_v1 import SecretStr, root_validator
|
|
from langchain_core.utils import get_from_dict_or_env
|
|
from tenacity import (
|
|
before_sleep_log,
|
|
retry,
|
|
retry_if_exception_type,
|
|
stop_after_attempt,
|
|
wait_exponential,
|
|
)
|
|
|
|
from langchain_google_genai._common import GoogleGenerativeAIError
|
|
from langchain_google_genai.llms import GoogleModelFamily, _BaseGoogleGenerativeAI
|
|
|
|
IMAGE_TYPES: Tuple = ()
|
|
try:
|
|
import PIL
|
|
from PIL.Image import Image
|
|
|
|
IMAGE_TYPES = IMAGE_TYPES + (Image,)
|
|
except ImportError:
|
|
PIL = None # type: ignore
|
|
Image = None # type: ignore
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class ChatGoogleGenerativeAIError(GoogleGenerativeAIError):
|
|
"""
|
|
Custom exception class for errors associated with the `Google GenAI` API.
|
|
|
|
This exception is raised when there are specific issues related to the
|
|
Google genai API usage in the ChatGoogleGenerativeAI class, such as unsupported
|
|
message types or roles.
|
|
"""
|
|
|
|
|
|
def _create_retry_decorator() -> Callable[[Any], Any]:
|
|
"""
|
|
Creates and returns a preconfigured tenacity retry decorator.
|
|
|
|
The retry decorator is configured to handle specific Google API exceptions
|
|
such as ResourceExhausted and ServiceUnavailable. It uses an exponential
|
|
backoff strategy for retries.
|
|
|
|
Returns:
|
|
Callable[[Any], Any]: A retry decorator configured for handling specific
|
|
Google API exceptions.
|
|
"""
|
|
multiplier = 2
|
|
min_seconds = 1
|
|
max_seconds = 60
|
|
max_retries = 10
|
|
|
|
return retry(
|
|
reraise=True,
|
|
stop=stop_after_attempt(max_retries),
|
|
wait=wait_exponential(multiplier=multiplier, min=min_seconds, max=max_seconds),
|
|
retry=(
|
|
retry_if_exception_type(google.api_core.exceptions.ResourceExhausted)
|
|
| retry_if_exception_type(google.api_core.exceptions.ServiceUnavailable)
|
|
| retry_if_exception_type(google.api_core.exceptions.GoogleAPIError)
|
|
),
|
|
before_sleep=before_sleep_log(logger, logging.WARNING),
|
|
)
|
|
|
|
|
|
def _chat_with_retry(generation_method: Callable, **kwargs: Any) -> Any:
|
|
"""
|
|
Executes a chat generation method with retry logic using tenacity.
|
|
|
|
This function is a wrapper that applies a retry mechanism to a provided
|
|
chat generation function. It is useful for handling intermittent issues
|
|
like network errors or temporary service unavailability.
|
|
|
|
Args:
|
|
generation_method (Callable): The chat generation method to be executed.
|
|
**kwargs (Any): Additional keyword arguments to pass to the generation method.
|
|
|
|
Returns:
|
|
Any: The result from the chat generation method.
|
|
"""
|
|
retry_decorator = _create_retry_decorator()
|
|
|
|
@retry_decorator
|
|
def _chat_with_retry(**kwargs: Any) -> Any:
|
|
try:
|
|
return generation_method(**kwargs)
|
|
# Do not retry for these errors.
|
|
except google.api_core.exceptions.FailedPrecondition as exc:
|
|
if "location is not supported" in exc.message:
|
|
error_msg = (
|
|
"Your location is not supported by google-generativeai "
|
|
"at the moment. Try to use ChatVertexAI LLM from "
|
|
"langchain_google_vertexai."
|
|
)
|
|
raise ValueError(error_msg)
|
|
|
|
except google.api_core.exceptions.InvalidArgument as e:
|
|
raise ChatGoogleGenerativeAIError(
|
|
f"Invalid argument provided to Gemini: {e}"
|
|
) from e
|
|
except Exception as e:
|
|
raise e
|
|
|
|
return _chat_with_retry(**kwargs)
|
|
|
|
|
|
async def _achat_with_retry(generation_method: Callable, **kwargs: Any) -> Any:
|
|
"""
|
|
Executes a chat generation method with retry logic using tenacity.
|
|
|
|
This function is a wrapper that applies a retry mechanism to a provided
|
|
chat generation function. It is useful for handling intermittent issues
|
|
like network errors or temporary service unavailability.
|
|
|
|
Args:
|
|
generation_method (Callable): The chat generation method to be executed.
|
|
**kwargs (Any): Additional keyword arguments to pass to the generation method.
|
|
|
|
Returns:
|
|
Any: The result from the chat generation method.
|
|
"""
|
|
retry_decorator = _create_retry_decorator()
|
|
from google.api_core.exceptions import InvalidArgument # type: ignore
|
|
|
|
@retry_decorator
|
|
async def _achat_with_retry(**kwargs: Any) -> Any:
|
|
try:
|
|
return await generation_method(**kwargs)
|
|
except InvalidArgument as e:
|
|
# Do not retry for these errors.
|
|
raise ChatGoogleGenerativeAIError(
|
|
f"Invalid argument provided to Gemini: {e}"
|
|
) from e
|
|
except Exception as e:
|
|
raise e
|
|
|
|
return await _achat_with_retry(**kwargs)
|
|
|
|
|
|
def _is_openai_parts_format(part: dict) -> bool:
|
|
return "type" in part
|
|
|
|
|
|
def _is_vision_model(model: str) -> bool:
|
|
return "vision" in model
|
|
|
|
|
|
def _is_url(s: str) -> bool:
|
|
try:
|
|
result = urlparse(s)
|
|
return all([result.scheme, result.netloc])
|
|
except Exception as e:
|
|
logger.debug(f"Unable to parse URL: {e}")
|
|
return False
|
|
|
|
|
|
def _is_b64(s: str) -> bool:
|
|
return s.startswith("data:image")
|
|
|
|
|
|
def _load_image_from_gcs(path: str, project: Optional[str] = None) -> Image:
|
|
try:
|
|
from google.cloud import storage # type: ignore[attr-defined]
|
|
except ImportError:
|
|
raise ImportError(
|
|
"google-cloud-storage is required to load images from GCS."
|
|
" Install it with `pip install google-cloud-storage`"
|
|
)
|
|
if PIL is None:
|
|
raise ImportError(
|
|
"PIL is required to load images. Please install it "
|
|
"with `pip install pillow`"
|
|
)
|
|
|
|
gcs_client = storage.Client(project=project)
|
|
pieces = path.split("/")
|
|
blobs = list(gcs_client.list_blobs(pieces[2], prefix="/".join(pieces[3:])))
|
|
if len(blobs) > 1:
|
|
raise ValueError(f"Found more than one candidate for {path}!")
|
|
img_bytes = blobs[0].download_as_bytes()
|
|
return PIL.Image.open(BytesIO(img_bytes))
|
|
|
|
|
|
def _url_to_pil(image_source: str) -> Image:
|
|
if PIL is None:
|
|
raise ImportError(
|
|
"PIL is required to load images. Please install it "
|
|
"with `pip install pillow`"
|
|
)
|
|
try:
|
|
if isinstance(image_source, IMAGE_TYPES):
|
|
return image_source # type: ignore[return-value]
|
|
elif _is_url(image_source):
|
|
if image_source.startswith("gs://"):
|
|
return _load_image_from_gcs(image_source)
|
|
response = requests.get(image_source)
|
|
response.raise_for_status()
|
|
return PIL.Image.open(BytesIO(response.content))
|
|
elif _is_b64(image_source):
|
|
_, encoded = image_source.split(",", 1)
|
|
data = base64.b64decode(encoded)
|
|
return PIL.Image.open(BytesIO(data))
|
|
elif os.path.exists(image_source):
|
|
return PIL.Image.open(image_source)
|
|
else:
|
|
raise ValueError(
|
|
"The provided string is not a valid URL, base64, or file path."
|
|
)
|
|
except Exception as e:
|
|
raise ValueError(f"Unable to process the provided image source: {e}")
|
|
|
|
|
|
def _convert_to_parts(
|
|
raw_content: Union[str, Sequence[Union[str, dict]]],
|
|
) -> List[genai.types.PartType]:
|
|
"""Converts a list of LangChain messages into a google parts."""
|
|
parts = []
|
|
content = [raw_content] if isinstance(raw_content, str) else raw_content
|
|
for part in content:
|
|
if isinstance(part, str):
|
|
parts.append(genai.types.PartDict(text=part))
|
|
elif isinstance(part, Mapping):
|
|
# OpenAI Format
|
|
if _is_openai_parts_format(part):
|
|
if part["type"] == "text":
|
|
parts.append({"text": part["text"]})
|
|
elif part["type"] == "image_url":
|
|
img_url = part["image_url"]
|
|
if isinstance(img_url, dict):
|
|
if "url" not in img_url:
|
|
raise ValueError(
|
|
f"Unrecognized message image format: {img_url}"
|
|
)
|
|
img_url = img_url["url"]
|
|
parts.append({"inline_data": _url_to_pil(img_url)})
|
|
else:
|
|
raise ValueError(f"Unrecognized message part type: {part['type']}")
|
|
else:
|
|
# Yolo
|
|
logger.warning(
|
|
"Unrecognized message part format. Assuming it's a text part."
|
|
)
|
|
parts.append(part)
|
|
else:
|
|
# TODO: Maybe some of Google's native stuff
|
|
# would hit this branch.
|
|
raise ChatGoogleGenerativeAIError(
|
|
"Gemini only supports text and inline_data parts."
|
|
)
|
|
return parts
|
|
|
|
|
|
def _parse_chat_history(
|
|
input_messages: Sequence[BaseMessage], convert_system_message_to_human: bool = False
|
|
) -> List[genai.types.ContentDict]:
|
|
messages: List[genai.types.MessageDict] = []
|
|
|
|
raw_system_message: Optional[SystemMessage] = None
|
|
for i, message in enumerate(input_messages):
|
|
if (
|
|
i == 0
|
|
and isinstance(message, SystemMessage)
|
|
and not convert_system_message_to_human
|
|
):
|
|
raise ValueError(
|
|
"""SystemMessages are not yet supported!
|
|
|
|
To automatically convert the leading SystemMessage to a HumanMessage,
|
|
set `convert_system_message_to_human` to True. Example:
|
|
|
|
llm = ChatGoogleGenerativeAI(model="gemini-pro", convert_system_message_to_human=True)
|
|
"""
|
|
)
|
|
elif i == 0 and isinstance(message, SystemMessage):
|
|
raw_system_message = message
|
|
continue
|
|
elif isinstance(message, AIMessage):
|
|
role = "model"
|
|
elif isinstance(message, HumanMessage):
|
|
role = "user"
|
|
else:
|
|
raise ValueError(
|
|
f"Unexpected message with type {type(message)} at the position {i}."
|
|
)
|
|
|
|
parts = _convert_to_parts(message.content)
|
|
if raw_system_message:
|
|
if role == "model":
|
|
raise ValueError(
|
|
"SystemMessage should be followed by a HumanMessage and "
|
|
"not by AIMessage."
|
|
)
|
|
parts = _convert_to_parts(raw_system_message.content) + parts
|
|
raw_system_message = None
|
|
messages.append({"role": role, "parts": parts})
|
|
return messages
|
|
|
|
|
|
def _parts_to_content(parts: List[genai.types.PartType]) -> Union[List[dict], str]:
|
|
"""Converts a list of Gemini API Part objects into a list of LangChain messages."""
|
|
if len(parts) == 1 and parts[0].text is not None and not parts[0].inline_data:
|
|
# Simple text response. The typical response
|
|
return parts[0].text
|
|
elif not parts:
|
|
logger.warning("Gemini produced an empty response.")
|
|
return ""
|
|
messages = []
|
|
for part in parts:
|
|
if part.text is not None:
|
|
messages.append(
|
|
{
|
|
"type": "text",
|
|
"text": part.text,
|
|
}
|
|
)
|
|
else:
|
|
# TODO: Handle inline_data if that's a thing?
|
|
raise ChatGoogleGenerativeAIError(f"Unexpected part type. {part}")
|
|
return messages
|
|
|
|
|
|
def _response_to_result(
|
|
response: genai.types.GenerateContentResponse,
|
|
ai_msg_t: Type[BaseMessage] = AIMessage,
|
|
human_msg_t: Type[BaseMessage] = HumanMessage,
|
|
chat_msg_t: Type[BaseMessage] = ChatMessage,
|
|
generation_t: Type[ChatGeneration] = ChatGeneration,
|
|
) -> ChatResult:
|
|
"""Converts a PaLM API response into a LangChain ChatResult."""
|
|
llm_output = {}
|
|
if response.prompt_feedback:
|
|
try:
|
|
prompt_feedback = type(response.prompt_feedback).to_dict(
|
|
response.prompt_feedback, use_integers_for_enums=False
|
|
)
|
|
llm_output["prompt_feedback"] = prompt_feedback
|
|
except Exception as e:
|
|
logger.debug(f"Unable to convert prompt_feedback to dict: {e}")
|
|
|
|
generations: List[ChatGeneration] = []
|
|
|
|
role_map = {
|
|
"model": ai_msg_t,
|
|
"user": human_msg_t,
|
|
}
|
|
for candidate in response.candidates:
|
|
content = candidate.content
|
|
parts_content = _parts_to_content(content.parts)
|
|
if content.role not in role_map:
|
|
logger.warning(
|
|
f"Unrecognized role: {content.role}. Treating as a ChatMessage."
|
|
)
|
|
msg = chat_msg_t(content=parts_content, role=content.role)
|
|
else:
|
|
msg = role_map[content.role](content=parts_content)
|
|
generation_info = {}
|
|
if candidate.finish_reason:
|
|
generation_info["finish_reason"] = candidate.finish_reason.name
|
|
if candidate.safety_ratings:
|
|
generation_info["safety_ratings"] = [
|
|
type(rating).to_dict(rating) for rating in candidate.safety_ratings
|
|
]
|
|
generations.append(generation_t(message=msg, generation_info=generation_info))
|
|
if not response.candidates:
|
|
# Likely a "prompt feedback" violation (e.g., toxic input)
|
|
# Raising an error would be different than how OpenAI handles it,
|
|
# so we'll just log a warning and continue with an empty message.
|
|
logger.warning(
|
|
"Gemini produced an empty response. Continuing with empty message\n"
|
|
f"Feedback: {response.prompt_feedback}"
|
|
)
|
|
generations = [generation_t(message=ai_msg_t(content=""), generation_info={})]
|
|
return ChatResult(generations=generations, llm_output=llm_output)
|
|
|
|
|
|
class ChatGoogleGenerativeAI(_BaseGoogleGenerativeAI, BaseChatModel):
|
|
"""`Google Generative AI` Chat models API.
|
|
|
|
To use, you must have either:
|
|
|
|
1. The ``GOOGLE_API_KEY``` environment variable set with your API key, or
|
|
2. Pass your API key using the google_api_key kwarg to the ChatGoogle
|
|
constructor.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_google_genai import ChatGoogleGenerativeAI
|
|
chat = ChatGoogleGenerativeAI(model="gemini-pro")
|
|
chat.invoke("Write me a ballad about LangChain")
|
|
|
|
"""
|
|
|
|
client: Any #: :meta private:
|
|
|
|
convert_system_message_to_human: bool = False
|
|
"""Whether to merge any leading SystemMessage into the following HumanMessage.
|
|
|
|
Gemini does not support system messages; any unsupported messages will
|
|
raise an error."""
|
|
|
|
class Config:
|
|
allow_population_by_field_name = True
|
|
|
|
@property
|
|
def lc_secrets(self) -> Dict[str, str]:
|
|
return {"google_api_key": "GOOGLE_API_KEY"}
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
return "chat-google-generative-ai"
|
|
|
|
@classmethod
|
|
def is_lc_serializable(self) -> bool:
|
|
return True
|
|
|
|
@root_validator()
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validates params and passes them to google-generativeai package."""
|
|
google_api_key = get_from_dict_or_env(
|
|
values, "google_api_key", "GOOGLE_API_KEY"
|
|
)
|
|
if isinstance(google_api_key, SecretStr):
|
|
google_api_key = google_api_key.get_secret_value()
|
|
|
|
genai.configure(
|
|
api_key=google_api_key,
|
|
transport=values.get("transport"),
|
|
client_options=values.get("client_options"),
|
|
)
|
|
if (
|
|
values.get("temperature") is not None
|
|
and not 0 <= values["temperature"] <= 1
|
|
):
|
|
raise ValueError("temperature must be in the range [0.0, 1.0]")
|
|
|
|
if values.get("top_p") is not None and not 0 <= values["top_p"] <= 1:
|
|
raise ValueError("top_p must be in the range [0.0, 1.0]")
|
|
|
|
if values.get("top_k") is not None and values["top_k"] <= 0:
|
|
raise ValueError("top_k must be positive")
|
|
model = values["model"]
|
|
values["client"] = genai.GenerativeModel(model_name=model)
|
|
return values
|
|
|
|
@property
|
|
def _identifying_params(self) -> Dict[str, Any]:
|
|
"""Get the identifying parameters."""
|
|
return {
|
|
"model": self.model,
|
|
"temperature": self.temperature,
|
|
"top_k": self.top_k,
|
|
"n": self.n,
|
|
}
|
|
|
|
def _prepare_params(
|
|
self, stop: Optional[List[str]], **kwargs: Any
|
|
) -> Dict[str, Any]:
|
|
gen_config = {
|
|
k: v
|
|
for k, v in {
|
|
"candidate_count": self.n,
|
|
"temperature": self.temperature,
|
|
"stop_sequences": stop,
|
|
"max_output_tokens": self.max_output_tokens,
|
|
"top_k": self.top_k,
|
|
"top_p": self.top_p,
|
|
}.items()
|
|
if v is not None
|
|
}
|
|
if "generation_config" in kwargs:
|
|
gen_config = {**gen_config, **kwargs.pop("generation_config")}
|
|
params = {"generation_config": gen_config, **kwargs}
|
|
return params
|
|
|
|
def _generate(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> ChatResult:
|
|
params, chat, message = self._prepare_chat(messages, stop=stop)
|
|
response: genai.types.GenerateContentResponse = _chat_with_retry(
|
|
content=message,
|
|
**params,
|
|
generation_method=chat.send_message,
|
|
)
|
|
return _response_to_result(response)
|
|
|
|
async def _agenerate(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> ChatResult:
|
|
params, chat, message = self._prepare_chat(messages, stop=stop)
|
|
response: genai.types.GenerateContentResponse = await _achat_with_retry(
|
|
content=message,
|
|
**params,
|
|
generation_method=chat.send_message_async,
|
|
)
|
|
return _response_to_result(response)
|
|
|
|
def _stream(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> Iterator[ChatGenerationChunk]:
|
|
params, chat, message = self._prepare_chat(messages, stop=stop)
|
|
response: genai.types.GenerateContentResponse = _chat_with_retry(
|
|
content=message,
|
|
**params,
|
|
generation_method=chat.send_message,
|
|
stream=True,
|
|
)
|
|
for chunk in response:
|
|
_chat_result = _response_to_result(
|
|
chunk,
|
|
ai_msg_t=AIMessageChunk,
|
|
human_msg_t=HumanMessageChunk,
|
|
chat_msg_t=ChatMessageChunk,
|
|
generation_t=ChatGenerationChunk,
|
|
)
|
|
gen = cast(ChatGenerationChunk, _chat_result.generations[0])
|
|
yield gen
|
|
if run_manager:
|
|
run_manager.on_llm_new_token(gen.text)
|
|
|
|
async def _astream(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> AsyncIterator[ChatGenerationChunk]:
|
|
params, chat, message = self._prepare_chat(messages, stop=stop)
|
|
async for chunk in await _achat_with_retry(
|
|
content=message,
|
|
**params,
|
|
generation_method=chat.send_message_async,
|
|
stream=True,
|
|
):
|
|
_chat_result = _response_to_result(
|
|
chunk,
|
|
ai_msg_t=AIMessageChunk,
|
|
human_msg_t=HumanMessageChunk,
|
|
chat_msg_t=ChatMessageChunk,
|
|
generation_t=ChatGenerationChunk,
|
|
)
|
|
gen = cast(ChatGenerationChunk, _chat_result.generations[0])
|
|
yield gen
|
|
if run_manager:
|
|
await run_manager.on_llm_new_token(gen.text)
|
|
|
|
def _prepare_chat(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
**kwargs: Any,
|
|
) -> Tuple[Dict[str, Any], genai.ChatSession, genai.types.ContentDict]:
|
|
params = self._prepare_params(stop, **kwargs)
|
|
history = _parse_chat_history(
|
|
messages,
|
|
convert_system_message_to_human=self.convert_system_message_to_human,
|
|
)
|
|
message = history.pop()
|
|
chat = self.client.start_chat(history=history)
|
|
return params, chat, message
|
|
|
|
def get_num_tokens(self, text: str) -> int:
|
|
"""Get the number of tokens present in the text.
|
|
|
|
Useful for checking if an input will fit in a model's context window.
|
|
|
|
Args:
|
|
text: The string input to tokenize.
|
|
|
|
Returns:
|
|
The integer number of tokens in the text.
|
|
"""
|
|
if self._model_family == GoogleModelFamily.GEMINI:
|
|
result = self.client.count_tokens(text)
|
|
token_count = result.total_tokens
|
|
else:
|
|
result = self.client.count_text_tokens(model=self.model, prompt=text)
|
|
token_count = result["token_count"]
|
|
|
|
return token_count
|