mirror of
https://github.com/hwchase17/langchain
synced 2024-11-08 07:10:35 +00:00
138 lines
4.6 KiB
Python
138 lines
4.6 KiB
Python
import logging
|
|
import time
|
|
from typing import Any, Dict, List, Mapping, Optional
|
|
|
|
import requests
|
|
from langchain_core.callbacks import CallbackManagerForLLMRun
|
|
from langchain_core.language_models.llms import LLM
|
|
from langchain_core.pydantic_v1 import Extra, Field, SecretStr, root_validator
|
|
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
|
|
|
|
from langchain_community.llms.utils import enforce_stop_tokens
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class StochasticAI(LLM):
|
|
"""StochasticAI large language models.
|
|
|
|
To use, you should have the environment variable ``STOCHASTICAI_API_KEY``
|
|
set with your API key.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.llms import StochasticAI
|
|
stochasticai = StochasticAI(api_url="")
|
|
"""
|
|
|
|
api_url: str = ""
|
|
"""Model name to use."""
|
|
|
|
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
|
"""Holds any model parameters valid for `create` call not
|
|
explicitly specified."""
|
|
|
|
stochasticai_api_key: Optional[SecretStr] = None
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic object."""
|
|
|
|
extra = Extra.forbid
|
|
|
|
@root_validator(pre=True)
|
|
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
|
"""Build extra kwargs from additional params that were passed in."""
|
|
all_required_field_names = {field.alias for field in cls.__fields__.values()}
|
|
|
|
extra = values.get("model_kwargs", {})
|
|
for field_name in list(values):
|
|
if field_name not in all_required_field_names:
|
|
if field_name in extra:
|
|
raise ValueError(f"Found {field_name} supplied twice.")
|
|
logger.warning(
|
|
f"""{field_name} was transferred to model_kwargs.
|
|
Please confirm that {field_name} is what you intended."""
|
|
)
|
|
extra[field_name] = values.pop(field_name)
|
|
values["model_kwargs"] = extra
|
|
return values
|
|
|
|
@root_validator()
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate that api key exists in environment."""
|
|
stochasticai_api_key = convert_to_secret_str(
|
|
get_from_dict_or_env(values, "stochasticai_api_key", "STOCHASTICAI_API_KEY")
|
|
)
|
|
values["stochasticai_api_key"] = stochasticai_api_key
|
|
return values
|
|
|
|
@property
|
|
def _identifying_params(self) -> Mapping[str, Any]:
|
|
"""Get the identifying parameters."""
|
|
return {
|
|
**{"endpoint_url": self.api_url},
|
|
**{"model_kwargs": self.model_kwargs},
|
|
}
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of llm."""
|
|
return "stochasticai"
|
|
|
|
def _call(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> str:
|
|
"""Call out to StochasticAI's complete endpoint.
|
|
|
|
Args:
|
|
prompt: The prompt to pass into the model.
|
|
stop: Optional list of stop words to use when generating.
|
|
|
|
Returns:
|
|
The string generated by the model.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
response = StochasticAI("Tell me a joke.")
|
|
"""
|
|
params = self.model_kwargs or {}
|
|
params = {**params, **kwargs}
|
|
response_post = requests.post(
|
|
url=self.api_url,
|
|
json={"prompt": prompt, "params": params},
|
|
headers={
|
|
"apiKey": f"{self.stochasticai_api_key.get_secret_value()}",
|
|
"Accept": "application/json",
|
|
"Content-Type": "application/json",
|
|
},
|
|
)
|
|
response_post.raise_for_status()
|
|
response_post_json = response_post.json()
|
|
completed = False
|
|
while not completed:
|
|
response_get = requests.get(
|
|
url=response_post_json["data"]["responseUrl"],
|
|
headers={
|
|
"apiKey": f"{self.stochasticai_api_key.get_secret_value()}",
|
|
"Accept": "application/json",
|
|
"Content-Type": "application/json",
|
|
},
|
|
)
|
|
response_get.raise_for_status()
|
|
response_get_json = response_get.json()["data"]
|
|
text = response_get_json.get("completion")
|
|
completed = text is not None
|
|
time.sleep(0.5)
|
|
text = text[0]
|
|
if stop is not None:
|
|
# I believe this is required since the stop tokens
|
|
# are not enforced by the model parameters
|
|
text = enforce_stop_tokens(text, stop)
|
|
return text
|