mirror of
https://github.com/hwchase17/langchain
synced 2024-11-08 07:10:35 +00:00
b2fd41331e
Addded missed docstrings. Fixed inconsistency in docstrings. **Note** CC @efriis There were PR errors on `langchain_experimental/prompt_injection_identifier/hugging_face_identifier.py` But, I didn't touch this file in this PR! Can it be some cache problems? I fixed this error.
382 lines
12 KiB
Python
382 lines
12 KiB
Python
import asyncio
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
from typing import Any, AsyncIterator, Callable, Dict, Iterator, List, Optional, Union
|
|
|
|
from langchain_core.callbacks import (
|
|
AsyncCallbackManagerForLLMRun,
|
|
CallbackManagerForLLMRun,
|
|
)
|
|
from langchain_core.language_models.llms import BaseLLM, create_base_retry_decorator
|
|
from langchain_core.outputs import Generation, GenerationChunk, LLMResult
|
|
from langchain_core.pydantic_v1 import Field, SecretStr, root_validator
|
|
from langchain_core.utils import convert_to_secret_str
|
|
from langchain_core.utils.env import get_from_dict_or_env
|
|
|
|
|
|
def _stream_response_to_generation_chunk(
|
|
stream_response: Any,
|
|
) -> GenerationChunk:
|
|
"""Convert a stream response to a generation chunk."""
|
|
return GenerationChunk(
|
|
text=stream_response.choices[0].text,
|
|
generation_info=dict(
|
|
finish_reason=stream_response.choices[0].finish_reason,
|
|
logprobs=stream_response.choices[0].logprobs,
|
|
),
|
|
)
|
|
|
|
|
|
class Fireworks(BaseLLM):
|
|
"""Fireworks models."""
|
|
|
|
model: str = "accounts/fireworks/models/llama-v2-7b-chat"
|
|
model_kwargs: dict = Field(
|
|
default_factory=lambda: {
|
|
"temperature": 0.7,
|
|
"max_tokens": 512,
|
|
"top_p": 1,
|
|
}.copy()
|
|
)
|
|
fireworks_api_key: Optional[SecretStr] = None
|
|
max_retries: int = 20
|
|
batch_size: int = 20
|
|
use_retry: bool = True
|
|
|
|
@property
|
|
def lc_secrets(self) -> Dict[str, str]:
|
|
return {"fireworks_api_key": "FIREWORKS_API_KEY"}
|
|
|
|
@classmethod
|
|
def is_lc_serializable(cls) -> bool:
|
|
return True
|
|
|
|
@classmethod
|
|
def get_lc_namespace(cls) -> List[str]:
|
|
"""Get the namespace of the langchain object."""
|
|
return ["langchain", "llms", "fireworks"]
|
|
|
|
@root_validator()
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate that api key in environment."""
|
|
try:
|
|
import fireworks.client
|
|
except ImportError as e:
|
|
raise ImportError(
|
|
"Could not import fireworks-ai python package. "
|
|
"Please install it with `pip install fireworks-ai`."
|
|
) from e
|
|
fireworks_api_key = convert_to_secret_str(
|
|
get_from_dict_or_env(values, "fireworks_api_key", "FIREWORKS_API_KEY")
|
|
)
|
|
fireworks.client.api_key = fireworks_api_key.get_secret_value()
|
|
return values
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of llm."""
|
|
return "fireworks"
|
|
|
|
def _generate(
|
|
self,
|
|
prompts: List[str],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> LLMResult:
|
|
"""Call out to Fireworks endpoint with k unique prompts.
|
|
Args:
|
|
prompts: The prompts to pass into the model.
|
|
stop: Optional list of stop words to use when generating.
|
|
Returns:
|
|
The full LLM output.
|
|
"""
|
|
params = {
|
|
"model": self.model,
|
|
**self.model_kwargs,
|
|
}
|
|
sub_prompts = self.get_batch_prompts(prompts)
|
|
choices = []
|
|
for _prompts in sub_prompts:
|
|
response = completion_with_retry_batching(
|
|
self,
|
|
self.use_retry,
|
|
prompt=_prompts,
|
|
run_manager=run_manager,
|
|
stop=stop,
|
|
**params,
|
|
)
|
|
choices.extend(response)
|
|
|
|
return self.create_llm_result(choices, prompts)
|
|
|
|
async def _agenerate(
|
|
self,
|
|
prompts: List[str],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> LLMResult:
|
|
"""Call out to Fireworks endpoint async with k unique prompts."""
|
|
params = {
|
|
"model": self.model,
|
|
**self.model_kwargs,
|
|
}
|
|
sub_prompts = self.get_batch_prompts(prompts)
|
|
choices = []
|
|
for _prompts in sub_prompts:
|
|
response = await acompletion_with_retry_batching(
|
|
self,
|
|
self.use_retry,
|
|
prompt=_prompts,
|
|
run_manager=run_manager,
|
|
stop=stop,
|
|
**params,
|
|
)
|
|
choices.extend(response)
|
|
|
|
return self.create_llm_result(choices, prompts)
|
|
|
|
def get_batch_prompts(
|
|
self,
|
|
prompts: List[str],
|
|
) -> List[List[str]]:
|
|
"""Get the sub prompts for llm call."""
|
|
sub_prompts = [
|
|
prompts[i : i + self.batch_size]
|
|
for i in range(0, len(prompts), self.batch_size)
|
|
]
|
|
return sub_prompts
|
|
|
|
def create_llm_result(self, choices: Any, prompts: List[str]) -> LLMResult:
|
|
"""Create the LLMResult from the choices and prompts."""
|
|
generations = []
|
|
for i, _ in enumerate(prompts):
|
|
sub_choices = choices[i : (i + 1)]
|
|
generations.append(
|
|
[
|
|
Generation(
|
|
text=choice.__dict__["choices"][0].text,
|
|
)
|
|
for choice in sub_choices
|
|
]
|
|
)
|
|
llm_output = {"model": self.model}
|
|
return LLMResult(generations=generations, llm_output=llm_output)
|
|
|
|
def _stream(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> Iterator[GenerationChunk]:
|
|
params = {
|
|
"model": self.model,
|
|
"prompt": prompt,
|
|
"stream": True,
|
|
**self.model_kwargs,
|
|
}
|
|
for stream_resp in completion_with_retry(
|
|
self, self.use_retry, run_manager=run_manager, stop=stop, **params
|
|
):
|
|
chunk = _stream_response_to_generation_chunk(stream_resp)
|
|
yield chunk
|
|
if run_manager:
|
|
run_manager.on_llm_new_token(chunk.text, chunk=chunk)
|
|
|
|
async def _astream(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> AsyncIterator[GenerationChunk]:
|
|
params = {
|
|
"model": self.model,
|
|
"prompt": prompt,
|
|
"stream": True,
|
|
**self.model_kwargs,
|
|
}
|
|
async for stream_resp in await acompletion_with_retry_streaming(
|
|
self, self.use_retry, run_manager=run_manager, stop=stop, **params
|
|
):
|
|
chunk = _stream_response_to_generation_chunk(stream_resp)
|
|
yield chunk
|
|
if run_manager:
|
|
await run_manager.on_llm_new_token(chunk.text, chunk=chunk)
|
|
|
|
|
|
def conditional_decorator(
|
|
condition: bool, decorator: Callable[[Any], Any]
|
|
) -> Callable[[Any], Any]:
|
|
"""Conditionally apply a decorator.
|
|
|
|
Args:
|
|
condition: A boolean indicating whether to apply the decorator.
|
|
decorator: A decorator function.
|
|
|
|
Returns:
|
|
A decorator function.
|
|
"""
|
|
|
|
def actual_decorator(func: Callable[[Any], Any]) -> Callable[[Any], Any]:
|
|
if condition:
|
|
return decorator(func)
|
|
return func
|
|
|
|
return actual_decorator
|
|
|
|
|
|
def completion_with_retry(
|
|
llm: Fireworks,
|
|
use_retry: bool,
|
|
*,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> Any:
|
|
"""Use tenacity to retry the completion call."""
|
|
import fireworks.client
|
|
|
|
retry_decorator = _create_retry_decorator(llm, run_manager=run_manager)
|
|
|
|
@conditional_decorator(use_retry, retry_decorator)
|
|
def _completion_with_retry(**kwargs: Any) -> Any:
|
|
return fireworks.client.Completion.create(
|
|
**kwargs,
|
|
)
|
|
|
|
return _completion_with_retry(**kwargs)
|
|
|
|
|
|
async def acompletion_with_retry(
|
|
llm: Fireworks,
|
|
use_retry: bool,
|
|
*,
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> Any:
|
|
"""Use tenacity to retry the completion call."""
|
|
import fireworks.client
|
|
|
|
retry_decorator = _create_retry_decorator(llm, run_manager=run_manager)
|
|
|
|
@conditional_decorator(use_retry, retry_decorator)
|
|
async def _completion_with_retry(**kwargs: Any) -> Any:
|
|
return await fireworks.client.Completion.acreate(
|
|
**kwargs,
|
|
)
|
|
|
|
return await _completion_with_retry(**kwargs)
|
|
|
|
|
|
def completion_with_retry_batching(
|
|
llm: Fireworks,
|
|
use_retry: bool,
|
|
*,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> Any:
|
|
"""Use tenacity to retry the completion call."""
|
|
import fireworks.client
|
|
|
|
prompt = kwargs["prompt"]
|
|
del kwargs["prompt"]
|
|
|
|
retry_decorator = _create_retry_decorator(llm, run_manager=run_manager)
|
|
|
|
@conditional_decorator(use_retry, retry_decorator)
|
|
def _completion_with_retry(prompt: str) -> Any:
|
|
return fireworks.client.Completion.create(**kwargs, prompt=prompt)
|
|
|
|
def batch_sync_run() -> List:
|
|
with ThreadPoolExecutor() as executor:
|
|
results = list(executor.map(_completion_with_retry, prompt))
|
|
return results
|
|
|
|
return batch_sync_run()
|
|
|
|
|
|
async def acompletion_with_retry_batching(
|
|
llm: Fireworks,
|
|
use_retry: bool,
|
|
*,
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> Any:
|
|
"""Use tenacity to retry the completion call."""
|
|
import fireworks.client
|
|
|
|
prompt = kwargs["prompt"]
|
|
del kwargs["prompt"]
|
|
|
|
retry_decorator = _create_retry_decorator(llm, run_manager=run_manager)
|
|
|
|
@conditional_decorator(use_retry, retry_decorator)
|
|
async def _completion_with_retry(prompt: str) -> Any:
|
|
return await fireworks.client.Completion.acreate(**kwargs, prompt=prompt)
|
|
|
|
def run_coroutine_in_new_loop(
|
|
coroutine_func: Any, *args: Dict, **kwargs: Dict
|
|
) -> Any:
|
|
new_loop = asyncio.new_event_loop()
|
|
try:
|
|
asyncio.set_event_loop(new_loop)
|
|
return new_loop.run_until_complete(coroutine_func(*args, **kwargs))
|
|
finally:
|
|
new_loop.close()
|
|
|
|
async def batch_sync_run() -> List:
|
|
with ThreadPoolExecutor() as executor:
|
|
results = list(
|
|
executor.map(
|
|
run_coroutine_in_new_loop,
|
|
[_completion_with_retry] * len(prompt),
|
|
prompt,
|
|
)
|
|
)
|
|
return results
|
|
|
|
return await batch_sync_run()
|
|
|
|
|
|
async def acompletion_with_retry_streaming(
|
|
llm: Fireworks,
|
|
use_retry: bool,
|
|
*,
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> Any:
|
|
"""Use tenacity to retry the completion call for streaming."""
|
|
import fireworks.client
|
|
|
|
retry_decorator = _create_retry_decorator(llm, run_manager=run_manager)
|
|
|
|
@conditional_decorator(use_retry, retry_decorator)
|
|
async def _completion_with_retry(**kwargs: Any) -> Any:
|
|
return fireworks.client.Completion.acreate(
|
|
**kwargs,
|
|
)
|
|
|
|
return await _completion_with_retry(**kwargs)
|
|
|
|
|
|
def _create_retry_decorator(
|
|
llm: Fireworks,
|
|
*,
|
|
run_manager: Optional[
|
|
Union[AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun]
|
|
] = None,
|
|
) -> Callable[[Any], Any]:
|
|
"""Define retry mechanism."""
|
|
import fireworks.client
|
|
|
|
errors = [
|
|
fireworks.client.error.RateLimitError,
|
|
fireworks.client.error.InternalServerError,
|
|
fireworks.client.error.BadGatewayError,
|
|
fireworks.client.error.ServiceUnavailableError,
|
|
]
|
|
return create_base_retry_decorator(
|
|
error_types=errors, max_retries=llm.max_retries, run_manager=run_manager
|
|
)
|