langchain/libs/partners/google-vertexai/tests/integration_tests/test_chat_models.py

223 lines
7.9 KiB
Python

"""Test ChatGoogleVertexAI chat model."""
from typing import cast
import pytest
from langchain_core.messages import (
AIMessage,
AIMessageChunk,
HumanMessage,
SystemMessage,
)
from langchain_core.outputs import ChatGeneration, LLMResult
from langchain_google_vertexai.chat_models import ChatVertexAI
model_names_to_test = [None, "codechat-bison", "chat-bison", "gemini-pro"]
@pytest.mark.parametrize("model_name", model_names_to_test)
def test_initialization(model_name: str) -> None:
"""Test chat model initialization."""
if model_name:
model = ChatVertexAI(model_name=model_name)
else:
model = ChatVertexAI()
assert model._llm_type == "vertexai"
try:
assert model.model_name == model.client._model_id
except AttributeError:
assert model.model_name == model.client._model_name.split("/")[-1]
@pytest.mark.parametrize("model_name", model_names_to_test)
def test_vertexai_single_call(model_name: str) -> None:
if model_name:
model = ChatVertexAI(model_name=model_name)
else:
model = ChatVertexAI()
message = HumanMessage(content="Hello")
response = model([message])
assert isinstance(response, AIMessage)
assert isinstance(response.content, str)
# mark xfail because Vertex API randomly doesn't respect
# the n/candidate_count parameter
@pytest.mark.xfail
def test_candidates() -> None:
model = ChatVertexAI(model_name="chat-bison@001", temperature=0.3, n=2)
message = HumanMessage(content="Hello")
response = model.generate(messages=[[message]])
assert isinstance(response, LLMResult)
assert len(response.generations) == 1
assert len(response.generations[0]) == 2
@pytest.mark.parametrize("model_name", ["chat-bison@001", "gemini-pro"])
async def test_vertexai_agenerate(model_name: str) -> None:
model = ChatVertexAI(temperature=0, model_name=model_name)
message = HumanMessage(content="Hello")
response = await model.agenerate([[message]])
assert isinstance(response, LLMResult)
assert isinstance(response.generations[0][0].message, AIMessage) # type: ignore
sync_response = model.generate([[message]])
sync_generation = cast(ChatGeneration, sync_response.generations[0][0])
async_generation = cast(ChatGeneration, response.generations[0][0])
# assert some properties to make debugging easier
# xfail: this is not equivalent with temp=0 right now
# assert sync_generation.message.content == async_generation.message.content
assert sync_generation.generation_info == async_generation.generation_info
# xfail: content is not same right now
# assert sync_generation == async_generation
@pytest.mark.parametrize("model_name", ["chat-bison@001", "gemini-pro"])
def test_vertexai_stream(model_name: str) -> None:
model = ChatVertexAI(temperature=0, model_name=model_name)
message = HumanMessage(content="Hello")
sync_response = model.stream([message])
for chunk in sync_response:
assert isinstance(chunk, AIMessageChunk)
def test_vertexai_single_call_with_context() -> None:
model = ChatVertexAI()
raw_context = (
"My name is Ned. You are my personal assistant. My favorite movies "
"are Lord of the Rings and Hobbit."
)
question = (
"Hello, could you recommend a good movie for me to watch this evening, please?"
)
context = SystemMessage(content=raw_context)
message = HumanMessage(content=question)
response = model([context, message])
assert isinstance(response, AIMessage)
assert isinstance(response.content, str)
def test_multimodal() -> None:
llm = ChatVertexAI(model_name="gemini-pro-vision")
gcs_url = (
"gs://cloud-samples-data/generative-ai/image/"
"320px-Felis_catus-cat_on_snow.jpg"
)
image_message = {
"type": "image_url",
"image_url": {"url": gcs_url},
}
text_message = {
"type": "text",
"text": "What is shown in this image?",
}
message = HumanMessage(content=[text_message, image_message])
output = llm([message])
assert isinstance(output.content, str)
@pytest.mark.xfail(reason="problem on vertex side")
def test_multimodal_history() -> None:
llm = ChatVertexAI(model_name="gemini-pro-vision")
gcs_url = (
"gs://cloud-samples-data/generative-ai/image/"
"320px-Felis_catus-cat_on_snow.jpg"
)
image_message = {
"type": "image_url",
"image_url": {"url": gcs_url},
}
text_message = {
"type": "text",
"text": "What is shown in this image?",
}
message1 = HumanMessage(content=[text_message, image_message])
message2 = AIMessage(
content=(
"This is a picture of a cat in the snow. The cat is a tabby cat, which is "
"a type of cat with a striped coat. The cat is standing in the snow, and "
"its fur is covered in snow."
)
)
message3 = HumanMessage(content="What time of day is it?")
response = llm([message1, message2, message3])
assert isinstance(response, AIMessage)
assert isinstance(response.content, str)
def test_vertexai_single_call_with_examples() -> None:
model = ChatVertexAI()
raw_context = "My name is Ned. You are my personal assistant."
question = "2+2"
text_question, text_answer = "4+4", "8"
inp = HumanMessage(content=text_question)
output = AIMessage(content=text_answer)
context = SystemMessage(content=raw_context)
message = HumanMessage(content=question)
response = model([context, message], examples=[inp, output])
assert isinstance(response, AIMessage)
assert isinstance(response.content, str)
@pytest.mark.parametrize("model_name", model_names_to_test)
def test_vertexai_single_call_with_history(model_name: str) -> None:
if model_name:
model = ChatVertexAI(model_name=model_name)
else:
model = ChatVertexAI()
text_question1, text_answer1 = "How much is 2+2?", "4"
text_question2 = "How much is 3+3?"
message1 = HumanMessage(content=text_question1)
message2 = AIMessage(content=text_answer1)
message3 = HumanMessage(content=text_question2)
response = model([message1, message2, message3])
assert isinstance(response, AIMessage)
assert isinstance(response.content, str)
def test_vertexai_single_call_fails_no_message() -> None:
chat = ChatVertexAI()
with pytest.raises(ValueError) as exc_info:
_ = chat([])
assert (
str(exc_info.value)
== "You should provide at least one message to start the chat!"
)
@pytest.mark.parametrize("model_name", ["gemini-pro"])
def test_chat_vertexai_gemini_system_message_error(model_name: str) -> None:
model = ChatVertexAI(model_name=model_name)
text_question1, text_answer1 = "How much is 2+2?", "4"
text_question2 = "How much is 3+3?"
system_message = SystemMessage(content="You're supposed to answer math questions.")
message1 = HumanMessage(content=text_question1)
message2 = AIMessage(content=text_answer1)
message3 = HumanMessage(content=text_question2)
with pytest.raises(ValueError):
model([system_message, message1, message2, message3])
@pytest.mark.parametrize("model_name", model_names_to_test)
def test_chat_vertexai_system_message(model_name: str) -> None:
if model_name:
model = ChatVertexAI(
model_name=model_name, convert_system_message_to_human=True
)
else:
model = ChatVertexAI()
text_question1, text_answer1 = "How much is 2+2?", "4"
text_question2 = "How much is 3+3?"
system_message = SystemMessage(content="You're supposed to answer math questions.")
message1 = HumanMessage(content=text_question1)
message2 = AIMessage(content=text_answer1)
message3 = HumanMessage(content=text_question2)
response = model([system_message, message1, message2, message3])
assert isinstance(response, AIMessage)
assert isinstance(response.content, str)