mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
185 lines
6.5 KiB
Python
185 lines
6.5 KiB
Python
import base64
|
|
import hashlib
|
|
import hmac
|
|
import json
|
|
import logging
|
|
from datetime import datetime
|
|
from time import mktime
|
|
from typing import Any, Dict, List, Optional
|
|
from urllib.parse import urlencode
|
|
from wsgiref.handlers import format_date_time
|
|
|
|
import numpy as np
|
|
import requests
|
|
from langchain_core.embeddings import Embeddings
|
|
from langchain_core.pydantic_v1 import BaseModel, SecretStr, root_validator
|
|
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
|
|
from numpy import ndarray
|
|
|
|
# Used for document and knowledge embedding
|
|
EMBEDDING_P_API_URL: str = "https://cn-huabei-1.xf-yun.com/v1/private/sa8a05c27"
|
|
# Used for user questions embedding
|
|
EMBEDDING_Q_API_URL: str = "https://cn-huabei-1.xf-yun.com/v1/private/s50d55a16"
|
|
|
|
# SparkLLMTextEmbeddings is an embedding model provided by iFLYTEK Co., Ltd.. (https://iflytek.com/en/).
|
|
|
|
# Official Website: https://www.xfyun.cn/doc/spark/Embedding_new_api.html
|
|
# Developers need to create an application in the console first, use the appid, APIKey,
|
|
# and APISecret provided in the application for authentication,
|
|
# and generate an authentication URL for handshake.
|
|
# You can get one by registering at https://console.xfyun.cn/services/bm3.
|
|
# SparkLLMTextEmbeddings support 2K token window and preduces vectors with
|
|
# 2560 dimensions.
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class Url:
|
|
def __init__(self, host: str, path: str, schema: str) -> None:
|
|
self.host = host
|
|
self.path = path
|
|
self.schema = schema
|
|
pass
|
|
|
|
|
|
class SparkLLMTextEmbeddings(BaseModel, Embeddings):
|
|
"""SparkLLM Text Embedding models."""
|
|
|
|
spark_app_id: SecretStr
|
|
spark_api_key: SecretStr
|
|
spark_api_secret: SecretStr
|
|
|
|
@root_validator(allow_reuse=True)
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate that auth token exists in environment."""
|
|
cls.spark_app_id = convert_to_secret_str(
|
|
get_from_dict_or_env(values, "spark_app_id", "SPARK_APP_ID")
|
|
)
|
|
cls.spark_api_key = convert_to_secret_str(
|
|
get_from_dict_or_env(values, "spark_api_key", "SPARK_API_KEY")
|
|
)
|
|
cls.spark_api_secret = convert_to_secret_str(
|
|
get_from_dict_or_env(values, "spark_api_secret", "SPARK_API_SECRET")
|
|
)
|
|
return values
|
|
|
|
def _embed(self, texts: List[str], host: str) -> Optional[List[List[float]]]:
|
|
url = self._assemble_ws_auth_url(
|
|
request_url=host,
|
|
method="POST",
|
|
api_key=self.spark_api_key.get_secret_value(),
|
|
api_secret=self.spark_api_secret.get_secret_value(),
|
|
)
|
|
content = self._get_body(self.spark_app_id.get_secret_value(), texts)
|
|
response = requests.post(
|
|
url, json=content, headers={"content-type": "application/json"}
|
|
).text
|
|
res_arr = self._parser_message(response)
|
|
if res_arr is not None:
|
|
return res_arr.tolist()
|
|
return None
|
|
|
|
def embed_documents(self, texts: List[str]) -> Optional[List[List[float]]]: # type: ignore[override]
|
|
"""Public method to get embeddings for a list of documents.
|
|
|
|
Args:
|
|
texts: The list of texts to embed.
|
|
|
|
Returns:
|
|
A list of embeddings, one for each text, or None if an error occurs.
|
|
"""
|
|
return self._embed(texts, EMBEDDING_P_API_URL)
|
|
|
|
def embed_query(self, text: str) -> Optional[List[float]]: # type: ignore[override]
|
|
"""Public method to get embedding for a single query text.
|
|
|
|
Args:
|
|
text: The text to embed.
|
|
|
|
Returns:
|
|
Embeddings for the text, or None if an error occurs.
|
|
"""
|
|
result = self._embed([text], EMBEDDING_Q_API_URL)
|
|
return result[0] if result is not None else None
|
|
|
|
@staticmethod
|
|
def _assemble_ws_auth_url(
|
|
request_url: str, method: str = "GET", api_key: str = "", api_secret: str = ""
|
|
) -> str:
|
|
u = SparkLLMTextEmbeddings._parse_url(request_url)
|
|
host = u.host
|
|
path = u.path
|
|
now = datetime.now()
|
|
date = format_date_time(mktime(now.timetuple()))
|
|
signature_origin = "host: {}\ndate: {}\n{} {} HTTP/1.1".format(
|
|
host, date, method, path
|
|
)
|
|
signature_sha = hmac.new(
|
|
api_secret.encode("utf-8"),
|
|
signature_origin.encode("utf-8"),
|
|
digestmod=hashlib.sha256,
|
|
).digest()
|
|
signature_sha_str = base64.b64encode(signature_sha).decode(encoding="utf-8")
|
|
authorization_origin = (
|
|
'api_key="%s", algorithm="%s", headers="%s", signature="%s"'
|
|
% (api_key, "hmac-sha256", "host date request-line", signature_sha_str)
|
|
)
|
|
authorization = base64.b64encode(authorization_origin.encode("utf-8")).decode(
|
|
encoding="utf-8"
|
|
)
|
|
values = {"host": host, "date": date, "authorization": authorization}
|
|
|
|
return request_url + "?" + urlencode(values)
|
|
|
|
@staticmethod
|
|
def _parse_url(request_url: str) -> Url:
|
|
stidx = request_url.index("://")
|
|
host = request_url[stidx + 3 :]
|
|
schema = request_url[: stidx + 3]
|
|
edidx = host.index("/")
|
|
if edidx <= 0:
|
|
raise AssembleHeaderException("invalid request url:" + request_url)
|
|
path = host[edidx:]
|
|
host = host[:edidx]
|
|
u = Url(host, path, schema)
|
|
return u
|
|
|
|
@staticmethod
|
|
def _get_body(appid: str, text: List[str]) -> Dict[str, Any]:
|
|
body = {
|
|
"header": {"app_id": appid, "uid": "39769795890", "status": 3},
|
|
"parameter": {"emb": {"feature": {"encoding": "utf8"}}},
|
|
"payload": {
|
|
"messages": {
|
|
"text": base64.b64encode(json.dumps(text).encode("utf-8")).decode()
|
|
}
|
|
},
|
|
}
|
|
return body
|
|
|
|
@staticmethod
|
|
def _parser_message(
|
|
message: str,
|
|
) -> Optional[ndarray]:
|
|
data = json.loads(message)
|
|
code = data["header"]["code"]
|
|
if code != 0:
|
|
logger.warning(f"Request error: {code}, {data}")
|
|
return None
|
|
else:
|
|
text_base = data["payload"]["feature"]["text"]
|
|
text_data = base64.b64decode(text_base)
|
|
dt = np.dtype(np.float32)
|
|
dt = dt.newbyteorder("<")
|
|
text = np.frombuffer(text_data, dtype=dt)
|
|
if len(text) > 2560:
|
|
array = text[:2560]
|
|
else:
|
|
array = text
|
|
return array
|
|
|
|
|
|
class AssembleHeaderException(Exception):
|
|
def __init__(self, msg: str) -> None:
|
|
self.message = msg
|