mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
b3a0c44838
* Implement lazy_load() for PDFMinerPDFasHTMLLoader and PyMuPDFLoader
750 lines
26 KiB
Python
750 lines
26 KiB
Python
import json
|
|
import logging
|
|
import os
|
|
import tempfile
|
|
import time
|
|
from abc import ABC
|
|
from io import StringIO
|
|
from pathlib import Path
|
|
from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Union
|
|
from urllib.parse import urlparse
|
|
|
|
import requests
|
|
from langchain_core.documents import Document
|
|
from langchain_core.utils import get_from_dict_or_env
|
|
|
|
from langchain_community.document_loaders.base import BaseLoader
|
|
from langchain_community.document_loaders.blob_loaders import Blob
|
|
from langchain_community.document_loaders.parsers.pdf import (
|
|
AmazonTextractPDFParser,
|
|
DocumentIntelligenceParser,
|
|
PDFMinerParser,
|
|
PDFPlumberParser,
|
|
PyMuPDFParser,
|
|
PyPDFium2Parser,
|
|
PyPDFParser,
|
|
)
|
|
from langchain_community.document_loaders.unstructured import UnstructuredFileLoader
|
|
|
|
logger = logging.getLogger(__file__)
|
|
|
|
|
|
class UnstructuredPDFLoader(UnstructuredFileLoader):
|
|
"""Load `PDF` files using `Unstructured`.
|
|
|
|
You can run the loader in one of two modes: "single" and "elements".
|
|
If you use "single" mode, the document will be returned as a single
|
|
langchain Document object. If you use "elements" mode, the unstructured
|
|
library will split the document into elements such as Title and NarrativeText.
|
|
You can pass in additional unstructured kwargs after mode to apply
|
|
different unstructured settings.
|
|
|
|
Examples
|
|
--------
|
|
from langchain_community.document_loaders import UnstructuredPDFLoader
|
|
|
|
loader = UnstructuredPDFLoader(
|
|
"example.pdf", mode="elements", strategy="fast",
|
|
)
|
|
docs = loader.load()
|
|
|
|
References
|
|
----------
|
|
https://unstructured-io.github.io/unstructured/bricks.html#partition-pdf
|
|
"""
|
|
|
|
def _get_elements(self) -> List:
|
|
from unstructured.partition.pdf import partition_pdf
|
|
|
|
return partition_pdf(filename=self.file_path, **self.unstructured_kwargs)
|
|
|
|
|
|
class BasePDFLoader(BaseLoader, ABC):
|
|
"""Base Loader class for `PDF` files.
|
|
|
|
If the file is a web path, it will download it to a temporary file, use it, then
|
|
clean up the temporary file after completion.
|
|
"""
|
|
|
|
def __init__(self, file_path: str, *, headers: Optional[Dict] = None):
|
|
"""Initialize with a file path.
|
|
|
|
Args:
|
|
file_path: Either a local, S3 or web path to a PDF file.
|
|
headers: Headers to use for GET request to download a file from a web path.
|
|
"""
|
|
self.file_path = file_path
|
|
self.web_path = None
|
|
self.headers = headers
|
|
if "~" in self.file_path:
|
|
self.file_path = os.path.expanduser(self.file_path)
|
|
|
|
# If the file is a web path or S3, download it to a temporary file, and use that
|
|
if not os.path.isfile(self.file_path) and self._is_valid_url(self.file_path):
|
|
self.temp_dir = tempfile.TemporaryDirectory()
|
|
_, suffix = os.path.splitext(self.file_path)
|
|
temp_pdf = os.path.join(self.temp_dir.name, f"tmp{suffix}")
|
|
self.web_path = self.file_path
|
|
if not self._is_s3_url(self.file_path):
|
|
r = requests.get(self.file_path, headers=self.headers)
|
|
if r.status_code != 200:
|
|
raise ValueError(
|
|
"Check the url of your file; returned status code %s"
|
|
% r.status_code
|
|
)
|
|
|
|
with open(temp_pdf, mode="wb") as f:
|
|
f.write(r.content)
|
|
self.file_path = str(temp_pdf)
|
|
elif not os.path.isfile(self.file_path):
|
|
raise ValueError("File path %s is not a valid file or url" % self.file_path)
|
|
|
|
def __del__(self) -> None:
|
|
if hasattr(self, "temp_dir"):
|
|
self.temp_dir.cleanup()
|
|
|
|
@staticmethod
|
|
def _is_valid_url(url: str) -> bool:
|
|
"""Check if the url is valid."""
|
|
parsed = urlparse(url)
|
|
return bool(parsed.netloc) and bool(parsed.scheme)
|
|
|
|
@staticmethod
|
|
def _is_s3_url(url: str) -> bool:
|
|
"""check if the url is S3"""
|
|
try:
|
|
result = urlparse(url)
|
|
if result.scheme == "s3" and result.netloc:
|
|
return True
|
|
return False
|
|
except ValueError:
|
|
return False
|
|
|
|
@property
|
|
def source(self) -> str:
|
|
return self.web_path if self.web_path is not None else self.file_path
|
|
|
|
|
|
class OnlinePDFLoader(BasePDFLoader):
|
|
"""Load online `PDF`."""
|
|
|
|
def load(self) -> List[Document]:
|
|
"""Load documents."""
|
|
loader = UnstructuredPDFLoader(str(self.file_path))
|
|
return loader.load()
|
|
|
|
|
|
class PyPDFLoader(BasePDFLoader):
|
|
"""Load PDF using pypdf into list of documents.
|
|
|
|
Loader chunks by page and stores page numbers in metadata.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
file_path: str,
|
|
password: Optional[Union[str, bytes]] = None,
|
|
headers: Optional[Dict] = None,
|
|
extract_images: bool = False,
|
|
) -> None:
|
|
"""Initialize with a file path."""
|
|
try:
|
|
import pypdf # noqa:F401
|
|
except ImportError:
|
|
raise ImportError(
|
|
"pypdf package not found, please install it with " "`pip install pypdf`"
|
|
)
|
|
super().__init__(file_path, headers=headers)
|
|
self.parser = PyPDFParser(password=password, extract_images=extract_images)
|
|
|
|
def lazy_load(
|
|
self,
|
|
) -> Iterator[Document]:
|
|
"""Lazy load given path as pages."""
|
|
if self.web_path:
|
|
blob = Blob.from_data(open(self.file_path, "rb").read(), path=self.web_path)
|
|
else:
|
|
blob = Blob.from_path(self.file_path)
|
|
yield from self.parser.parse(blob)
|
|
|
|
|
|
class PyPDFium2Loader(BasePDFLoader):
|
|
"""Load `PDF` using `pypdfium2` and chunks at character level."""
|
|
|
|
def __init__(
|
|
self,
|
|
file_path: str,
|
|
*,
|
|
headers: Optional[Dict] = None,
|
|
extract_images: bool = False,
|
|
):
|
|
"""Initialize with a file path."""
|
|
super().__init__(file_path, headers=headers)
|
|
self.parser = PyPDFium2Parser(extract_images=extract_images)
|
|
|
|
def lazy_load(
|
|
self,
|
|
) -> Iterator[Document]:
|
|
"""Lazy load given path as pages."""
|
|
if self.web_path:
|
|
blob = Blob.from_data(open(self.file_path, "rb").read(), path=self.web_path)
|
|
else:
|
|
blob = Blob.from_path(self.file_path)
|
|
yield from self.parser.parse(blob)
|
|
|
|
|
|
class PyPDFDirectoryLoader(BaseLoader):
|
|
"""Load a directory with `PDF` files using `pypdf` and chunks at character level.
|
|
|
|
Loader also stores page numbers in metadata.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
path: str,
|
|
glob: str = "**/[!.]*.pdf",
|
|
silent_errors: bool = False,
|
|
load_hidden: bool = False,
|
|
recursive: bool = False,
|
|
extract_images: bool = False,
|
|
):
|
|
self.path = path
|
|
self.glob = glob
|
|
self.load_hidden = load_hidden
|
|
self.recursive = recursive
|
|
self.silent_errors = silent_errors
|
|
self.extract_images = extract_images
|
|
|
|
@staticmethod
|
|
def _is_visible(path: Path) -> bool:
|
|
return not any(part.startswith(".") for part in path.parts)
|
|
|
|
def load(self) -> List[Document]:
|
|
p = Path(self.path)
|
|
docs = []
|
|
items = p.rglob(self.glob) if self.recursive else p.glob(self.glob)
|
|
for i in items:
|
|
if i.is_file():
|
|
if self._is_visible(i.relative_to(p)) or self.load_hidden:
|
|
try:
|
|
loader = PyPDFLoader(str(i), extract_images=self.extract_images)
|
|
sub_docs = loader.load()
|
|
for doc in sub_docs:
|
|
doc.metadata["source"] = str(i)
|
|
docs.extend(sub_docs)
|
|
except Exception as e:
|
|
if self.silent_errors:
|
|
logger.warning(e)
|
|
else:
|
|
raise e
|
|
return docs
|
|
|
|
|
|
class PDFMinerLoader(BasePDFLoader):
|
|
"""Load `PDF` files using `PDFMiner`."""
|
|
|
|
def __init__(
|
|
self,
|
|
file_path: str,
|
|
*,
|
|
headers: Optional[Dict] = None,
|
|
extract_images: bool = False,
|
|
concatenate_pages: bool = True,
|
|
) -> None:
|
|
"""Initialize with file path.
|
|
|
|
Args:
|
|
extract_images: Whether to extract images from PDF.
|
|
concatenate_pages: If True, concatenate all PDF pages into one a single
|
|
document. Otherwise, return one document per page.
|
|
"""
|
|
try:
|
|
from pdfminer.high_level import extract_text # noqa:F401
|
|
except ImportError:
|
|
raise ImportError(
|
|
"`pdfminer` package not found, please install it with "
|
|
"`pip install pdfminer.six`"
|
|
)
|
|
|
|
super().__init__(file_path, headers=headers)
|
|
self.parser = PDFMinerParser(
|
|
extract_images=extract_images, concatenate_pages=concatenate_pages
|
|
)
|
|
|
|
def lazy_load(
|
|
self,
|
|
) -> Iterator[Document]:
|
|
"""Lazily load documents."""
|
|
if self.web_path:
|
|
blob = Blob.from_data(open(self.file_path, "rb").read(), path=self.web_path)
|
|
else:
|
|
blob = Blob.from_path(self.file_path)
|
|
yield from self.parser.parse(blob)
|
|
|
|
|
|
class PDFMinerPDFasHTMLLoader(BasePDFLoader):
|
|
"""Load `PDF` files as HTML content using `PDFMiner`."""
|
|
|
|
def __init__(self, file_path: str, *, headers: Optional[Dict] = None):
|
|
"""Initialize with a file path."""
|
|
try:
|
|
from pdfminer.high_level import extract_text_to_fp # noqa:F401
|
|
except ImportError:
|
|
raise ImportError(
|
|
"`pdfminer` package not found, please install it with "
|
|
"`pip install pdfminer.six`"
|
|
)
|
|
|
|
super().__init__(file_path, headers=headers)
|
|
|
|
def lazy_load(self) -> Iterator[Document]:
|
|
"""Load file."""
|
|
from pdfminer.high_level import extract_text_to_fp
|
|
from pdfminer.layout import LAParams
|
|
from pdfminer.utils import open_filename
|
|
|
|
output_string = StringIO()
|
|
with open_filename(self.file_path, "rb") as fp:
|
|
extract_text_to_fp(
|
|
fp,
|
|
output_string,
|
|
codec="",
|
|
laparams=LAParams(),
|
|
output_type="html",
|
|
)
|
|
metadata = {
|
|
"source": self.file_path if self.web_path is None else self.web_path
|
|
}
|
|
yield Document(page_content=output_string.getvalue(), metadata=metadata)
|
|
|
|
|
|
class PyMuPDFLoader(BasePDFLoader):
|
|
"""Load `PDF` files using `PyMuPDF`."""
|
|
|
|
def __init__(
|
|
self,
|
|
file_path: str,
|
|
*,
|
|
headers: Optional[Dict] = None,
|
|
extract_images: bool = False,
|
|
**kwargs: Any,
|
|
) -> None:
|
|
"""Initialize with a file path."""
|
|
try:
|
|
import fitz # noqa:F401
|
|
except ImportError:
|
|
raise ImportError(
|
|
"`PyMuPDF` package not found, please install it with "
|
|
"`pip install pymupdf`"
|
|
)
|
|
super().__init__(file_path, headers=headers)
|
|
self.extract_images = extract_images
|
|
self.text_kwargs = kwargs
|
|
|
|
def _lazy_load(self, **kwargs: Any) -> Iterator[Document]:
|
|
if kwargs:
|
|
logger.warning(
|
|
f"Received runtime arguments {kwargs}. Passing runtime args to `load`"
|
|
f" is deprecated. Please pass arguments during initialization instead."
|
|
)
|
|
|
|
text_kwargs = {**self.text_kwargs, **kwargs}
|
|
parser = PyMuPDFParser(
|
|
text_kwargs=text_kwargs, extract_images=self.extract_images
|
|
)
|
|
if self.web_path:
|
|
blob = Blob.from_data(open(self.file_path, "rb").read(), path=self.web_path)
|
|
else:
|
|
blob = Blob.from_path(self.file_path)
|
|
yield from parser.lazy_parse(blob)
|
|
|
|
def load(self, **kwargs: Any) -> List[Document]:
|
|
return list(self._lazy_load(**kwargs))
|
|
|
|
def lazy_load(self) -> Iterator[Document]:
|
|
yield from self._lazy_load()
|
|
|
|
|
|
# MathpixPDFLoader implementation taken largely from Daniel Gross's:
|
|
# https://gist.github.com/danielgross/3ab4104e14faccc12b49200843adab21
|
|
class MathpixPDFLoader(BasePDFLoader):
|
|
"""Load `PDF` files using `Mathpix` service."""
|
|
|
|
def __init__(
|
|
self,
|
|
file_path: str,
|
|
processed_file_format: str = "md",
|
|
max_wait_time_seconds: int = 500,
|
|
should_clean_pdf: bool = False,
|
|
extra_request_data: Optional[Dict[str, Any]] = None,
|
|
**kwargs: Any,
|
|
) -> None:
|
|
"""Initialize with a file path.
|
|
|
|
Args:
|
|
file_path: a file for loading.
|
|
processed_file_format: a format of the processed file. Default is "md".
|
|
max_wait_time_seconds: a maximum time to wait for the response from
|
|
the server. Default is 500.
|
|
should_clean_pdf: a flag to clean the PDF file. Default is False.
|
|
extra_request_data: Additional request data.
|
|
**kwargs: additional keyword arguments.
|
|
"""
|
|
self.mathpix_api_key = get_from_dict_or_env(
|
|
kwargs, "mathpix_api_key", "MATHPIX_API_KEY"
|
|
)
|
|
self.mathpix_api_id = get_from_dict_or_env(
|
|
kwargs, "mathpix_api_id", "MATHPIX_API_ID"
|
|
)
|
|
|
|
# The base class isn't expecting these and doesn't collect **kwargs
|
|
kwargs.pop("mathpix_api_key", None)
|
|
kwargs.pop("mathpix_api_id", None)
|
|
|
|
super().__init__(file_path, **kwargs)
|
|
self.processed_file_format = processed_file_format
|
|
self.extra_request_data = (
|
|
extra_request_data if extra_request_data is not None else {}
|
|
)
|
|
self.max_wait_time_seconds = max_wait_time_seconds
|
|
self.should_clean_pdf = should_clean_pdf
|
|
|
|
@property
|
|
def _mathpix_headers(self) -> Dict[str, str]:
|
|
return {"app_id": self.mathpix_api_id, "app_key": self.mathpix_api_key}
|
|
|
|
@property
|
|
def url(self) -> str:
|
|
return "https://api.mathpix.com/v3/pdf"
|
|
|
|
@property
|
|
def data(self) -> dict:
|
|
options = {
|
|
"conversion_formats": {self.processed_file_format: True},
|
|
**self.extra_request_data,
|
|
}
|
|
return {"options_json": json.dumps(options)}
|
|
|
|
def send_pdf(self) -> str:
|
|
with open(self.file_path, "rb") as f:
|
|
files = {"file": f}
|
|
response = requests.post(
|
|
self.url, headers=self._mathpix_headers, files=files, data=self.data
|
|
)
|
|
response_data = response.json()
|
|
if "error" in response_data:
|
|
raise ValueError(f"Mathpix request failed: {response_data['error']}")
|
|
if "pdf_id" in response_data:
|
|
pdf_id = response_data["pdf_id"]
|
|
return pdf_id
|
|
else:
|
|
raise ValueError("Unable to send PDF to Mathpix.")
|
|
|
|
def wait_for_processing(self, pdf_id: str) -> None:
|
|
"""Wait for processing to complete.
|
|
|
|
Args:
|
|
pdf_id: a PDF id.
|
|
|
|
Returns: None
|
|
"""
|
|
url = self.url + "/" + pdf_id
|
|
for _ in range(0, self.max_wait_time_seconds, 5):
|
|
response = requests.get(url, headers=self._mathpix_headers)
|
|
response_data = response.json()
|
|
|
|
# This indicates an error with the request (e.g. auth problems)
|
|
error = response_data.get("error", None)
|
|
error_info = response_data.get("error_info", None)
|
|
|
|
if error is not None:
|
|
error_msg = f"Unable to retrieve PDF from Mathpix: {error}"
|
|
|
|
if error_info is not None:
|
|
error_msg += f" ({error_info['id']})"
|
|
|
|
raise ValueError(error_msg)
|
|
|
|
status = response_data.get("status", None)
|
|
|
|
if status == "completed":
|
|
return
|
|
elif status == "error":
|
|
# This indicates an error with the PDF processing
|
|
raise ValueError("Unable to retrieve PDF from Mathpix")
|
|
else:
|
|
print(f"Status: {status}, waiting for processing to complete") # noqa: T201
|
|
time.sleep(5)
|
|
raise TimeoutError
|
|
|
|
def get_processed_pdf(self, pdf_id: str) -> str:
|
|
self.wait_for_processing(pdf_id)
|
|
url = f"{self.url}/{pdf_id}.{self.processed_file_format}"
|
|
response = requests.get(url, headers=self._mathpix_headers)
|
|
return response.content.decode("utf-8")
|
|
|
|
def clean_pdf(self, contents: str) -> str:
|
|
"""Clean the PDF file.
|
|
|
|
Args:
|
|
contents: a PDF file contents.
|
|
|
|
Returns:
|
|
|
|
"""
|
|
contents = "\n".join(
|
|
[line for line in contents.split("\n") if not line.startswith("![]")]
|
|
)
|
|
# replace \section{Title} with # Title
|
|
contents = contents.replace("\\section{", "# ").replace("}", "")
|
|
# replace the "\" slash that Mathpix adds to escape $, %, (, etc.
|
|
contents = (
|
|
contents.replace(r"\$", "$")
|
|
.replace(r"\%", "%")
|
|
.replace(r"\(", "(")
|
|
.replace(r"\)", ")")
|
|
)
|
|
return contents
|
|
|
|
def load(self) -> List[Document]:
|
|
pdf_id = self.send_pdf()
|
|
contents = self.get_processed_pdf(pdf_id)
|
|
if self.should_clean_pdf:
|
|
contents = self.clean_pdf(contents)
|
|
metadata = {"source": self.source, "file_path": self.source, "pdf_id": pdf_id}
|
|
return [Document(page_content=contents, metadata=metadata)]
|
|
|
|
|
|
class PDFPlumberLoader(BasePDFLoader):
|
|
"""Load `PDF` files using `pdfplumber`."""
|
|
|
|
def __init__(
|
|
self,
|
|
file_path: str,
|
|
text_kwargs: Optional[Mapping[str, Any]] = None,
|
|
dedupe: bool = False,
|
|
headers: Optional[Dict] = None,
|
|
extract_images: bool = False,
|
|
) -> None:
|
|
"""Initialize with a file path."""
|
|
try:
|
|
import pdfplumber # noqa:F401
|
|
except ImportError:
|
|
raise ImportError(
|
|
"pdfplumber package not found, please install it with "
|
|
"`pip install pdfplumber`"
|
|
)
|
|
|
|
super().__init__(file_path, headers=headers)
|
|
self.text_kwargs = text_kwargs or {}
|
|
self.dedupe = dedupe
|
|
self.extract_images = extract_images
|
|
|
|
def load(self) -> List[Document]:
|
|
"""Load file."""
|
|
|
|
parser = PDFPlumberParser(
|
|
text_kwargs=self.text_kwargs,
|
|
dedupe=self.dedupe,
|
|
extract_images=self.extract_images,
|
|
)
|
|
if self.web_path:
|
|
blob = Blob.from_data(open(self.file_path, "rb").read(), path=self.web_path)
|
|
else:
|
|
blob = Blob.from_path(self.file_path)
|
|
return parser.parse(blob)
|
|
|
|
|
|
class AmazonTextractPDFLoader(BasePDFLoader):
|
|
"""Load `PDF` files from a local file system, HTTP or S3.
|
|
|
|
To authenticate, the AWS client uses the following methods to
|
|
automatically load credentials:
|
|
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html
|
|
|
|
If a specific credential profile should be used, you must pass
|
|
the name of the profile from the ~/.aws/credentials file that is to be used.
|
|
|
|
Make sure the credentials / roles used have the required policies to
|
|
access the Amazon Textract service.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
from langchain_community.document_loaders import AmazonTextractPDFLoader
|
|
loader = AmazonTextractPDFLoader(
|
|
file_path="s3://pdfs/myfile.pdf"
|
|
)
|
|
document = loader.load()
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
file_path: str,
|
|
textract_features: Optional[Sequence[str]] = None,
|
|
client: Optional[Any] = None,
|
|
credentials_profile_name: Optional[str] = None,
|
|
region_name: Optional[str] = None,
|
|
endpoint_url: Optional[str] = None,
|
|
headers: Optional[Dict] = None,
|
|
) -> None:
|
|
"""Initialize the loader.
|
|
|
|
Args:
|
|
file_path: A file, url or s3 path for input file
|
|
textract_features: Features to be used for extraction, each feature
|
|
should be passed as a str that conforms to the enum
|
|
`Textract_Features`, see `amazon-textract-caller` pkg
|
|
client: boto3 textract client (Optional)
|
|
credentials_profile_name: AWS profile name, if not default (Optional)
|
|
region_name: AWS region, eg us-east-1 (Optional)
|
|
endpoint_url: endpoint url for the textract service (Optional)
|
|
|
|
"""
|
|
super().__init__(file_path, headers=headers)
|
|
|
|
try:
|
|
import textractcaller as tc # noqa: F401
|
|
except ImportError:
|
|
raise ModuleNotFoundError(
|
|
"Could not import amazon-textract-caller python package. "
|
|
"Please install it with `pip install amazon-textract-caller`."
|
|
)
|
|
if textract_features:
|
|
features = [tc.Textract_Features[x] for x in textract_features]
|
|
else:
|
|
features = []
|
|
|
|
if credentials_profile_name or region_name or endpoint_url:
|
|
try:
|
|
import boto3
|
|
|
|
if credentials_profile_name is not None:
|
|
session = boto3.Session(profile_name=credentials_profile_name)
|
|
else:
|
|
# use default credentials
|
|
session = boto3.Session()
|
|
|
|
client_params = {}
|
|
if region_name:
|
|
client_params["region_name"] = region_name
|
|
if endpoint_url:
|
|
client_params["endpoint_url"] = endpoint_url
|
|
|
|
client = session.client("textract", **client_params)
|
|
|
|
except ImportError:
|
|
raise ModuleNotFoundError(
|
|
"Could not import boto3 python package. "
|
|
"Please install it with `pip install boto3`."
|
|
)
|
|
except Exception as e:
|
|
raise ValueError(
|
|
"Could not load credentials to authenticate with AWS client. "
|
|
"Please check that credentials in the specified "
|
|
"profile name are valid."
|
|
) from e
|
|
self.parser = AmazonTextractPDFParser(textract_features=features, client=client)
|
|
|
|
def load(self) -> List[Document]:
|
|
"""Load given path as pages."""
|
|
return list(self.lazy_load())
|
|
|
|
def lazy_load(
|
|
self,
|
|
) -> Iterator[Document]:
|
|
"""Lazy load documents"""
|
|
# the self.file_path is local, but the blob has to include
|
|
# the S3 location if the file originated from S3 for multi-page documents
|
|
# raises ValueError when multi-page and not on S3"""
|
|
|
|
if self.web_path and self._is_s3_url(self.web_path):
|
|
blob = Blob(path=self.web_path)
|
|
else:
|
|
blob = Blob.from_path(self.file_path)
|
|
if AmazonTextractPDFLoader._get_number_of_pages(blob) > 1:
|
|
raise ValueError(
|
|
f"the file {blob.path} is a multi-page document, \
|
|
but not stored on S3. \
|
|
Textract requires multi-page documents to be on S3."
|
|
)
|
|
|
|
yield from self.parser.parse(blob)
|
|
|
|
@staticmethod
|
|
def _get_number_of_pages(blob: Blob) -> int:
|
|
try:
|
|
import pypdf
|
|
from PIL import Image, ImageSequence
|
|
|
|
except ImportError:
|
|
raise ModuleNotFoundError(
|
|
"Could not import pypdf or Pilloe python package. "
|
|
"Please install it with `pip install pypdf Pillow`."
|
|
)
|
|
if blob.mimetype == "application/pdf":
|
|
with blob.as_bytes_io() as input_pdf_file:
|
|
pdf_reader = pypdf.PdfReader(input_pdf_file)
|
|
return len(pdf_reader.pages)
|
|
elif blob.mimetype == "image/tiff":
|
|
num_pages = 0
|
|
img = Image.open(blob.as_bytes())
|
|
for _, _ in enumerate(ImageSequence.Iterator(img)):
|
|
num_pages += 1
|
|
return num_pages
|
|
elif blob.mimetype in ["image/png", "image/jpeg"]:
|
|
return 1
|
|
else:
|
|
raise ValueError(f"unsupported mime type: {blob.mimetype}")
|
|
|
|
|
|
class DocumentIntelligenceLoader(BasePDFLoader):
|
|
"""Loads a PDF with Azure Document Intelligence"""
|
|
|
|
def __init__(
|
|
self,
|
|
file_path: str,
|
|
client: Any,
|
|
model: str = "prebuilt-document",
|
|
headers: Optional[Dict] = None,
|
|
) -> None:
|
|
"""
|
|
Initialize the object for file processing with Azure Document Intelligence
|
|
(formerly Form Recognizer).
|
|
|
|
This constructor initializes a DocumentIntelligenceParser object to be used
|
|
for parsing files using the Azure Document Intelligence API. The load method
|
|
generates a Document node including metadata (source blob and page number)
|
|
for each page.
|
|
|
|
Parameters:
|
|
-----------
|
|
file_path : str
|
|
The path to the file that needs to be parsed.
|
|
client: Any
|
|
A DocumentAnalysisClient to perform the analysis of the blob
|
|
model : str
|
|
The model name or ID to be used for form recognition in Azure.
|
|
|
|
Examples:
|
|
---------
|
|
>>> obj = DocumentIntelligenceLoader(
|
|
... file_path="path/to/file",
|
|
... client=client,
|
|
... model="prebuilt-document"
|
|
... )
|
|
"""
|
|
|
|
self.parser = DocumentIntelligenceParser(client=client, model=model)
|
|
super().__init__(file_path, headers=headers)
|
|
|
|
def load(self) -> List[Document]:
|
|
"""Load given path as pages."""
|
|
return list(self.lazy_load())
|
|
|
|
def lazy_load(
|
|
self,
|
|
) -> Iterator[Document]:
|
|
"""Lazy load given path as pages."""
|
|
blob = Blob.from_path(self.file_path)
|
|
yield from self.parser.parse(blob)
|