.. | ||
retrieval_agent | ||
tests | ||
.gitignore | ||
LICENSE | ||
poetry.lock | ||
pyproject.toml | ||
README.md |
retrieval-agent
This package uses Azure OpenAI to do retrieval using an agent architecture. By default, this does retrieval over Arxiv.
Environment Setup
Since we are using Azure OpenAI, we will need to set the following environment variables:
export AZURE_OPENAI_ENDPOINT=...
export AZURE_OPENAI_API_VERSION=...
export AZURE_OPENAI_API_KEY=...
Usage
To use this package, you should first have the LangChain CLI installed:
pip install -U langchain-cli
To create a new LangChain project and install this as the only package, you can do:
langchain app new my-app --package retrieval-agent
If you want to add this to an existing project, you can just run:
langchain app add retrieval-agent
And add the following code to your server.py
file:
from retrieval_agent import chain as retrieval_agent_chain
add_routes(app, retrieval_agent_chain, path="/retrieval-agent")
(Optional) Let's now configure LangSmith. LangSmith will help us trace, monitor and debug LangChain applications. You can sign up for LangSmith here. If you don't have access, you can skip this section
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-api-key>
export LANGCHAIN_PROJECT=<your-project> # if not specified, defaults to "default"
If you are inside this directory, then you can spin up a LangServe instance directly by:
langchain serve
This will start the FastAPI app with a server is running locally at http://localhost:8000
We can see all templates at http://127.0.0.1:8000/docs We can access the playground at http://127.0.0.1:8000/retrieval-agent/playground
We can access the template from code with:
from langserve.client import RemoteRunnable
runnable = RemoteRunnable("http://localhost:8000/retrieval-agent")