mirror of
https://github.com/hwchase17/langchain
synced 2024-11-11 19:11:02 +00:00
a0c2281540
```python """python scripts/update_mypy_ruff.py""" import glob import tomllib from pathlib import Path import toml import subprocess import re ROOT_DIR = Path(__file__).parents[1] def main(): for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True): print(path) with open(path, "rb") as f: pyproject = tomllib.load(f) try: pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = ( "^1.10" ) pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = ( "^0.5" ) except KeyError: continue with open(path, "w") as f: toml.dump(pyproject, f) cwd = "/".join(path.split("/")[:-1]) completed = subprocess.run( "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color", cwd=cwd, shell=True, capture_output=True, text=True, ) logs = completed.stdout.split("\n") to_ignore = {} for l in logs: if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l): path, line_no, error_type = re.match( "^(.*)\:(\d+)\: error:.*\[(.*)\]", l ).groups() if (path, line_no) in to_ignore: to_ignore[(path, line_no)].append(error_type) else: to_ignore[(path, line_no)] = [error_type] print(len(to_ignore)) for (error_path, line_no), error_types in to_ignore.items(): all_errors = ", ".join(error_types) full_path = f"{cwd}/{error_path}" try: with open(full_path, "r") as f: file_lines = f.readlines() except FileNotFoundError: continue file_lines[int(line_no) - 1] = ( file_lines[int(line_no) - 1][:-1] + f" # type: ignore[{all_errors}]\n" ) with open(full_path, "w") as f: f.write("".join(file_lines)) subprocess.run( "poetry run ruff format .; poetry run ruff --select I --fix .", cwd=cwd, shell=True, capture_output=True, text=True, ) if __name__ == "__main__": main() ```
408 lines
14 KiB
Python
408 lines
14 KiB
Python
"""Test ChatGroq chat model."""
|
|
|
|
import json
|
|
from typing import Any, Optional
|
|
|
|
import pytest
|
|
from langchain_core.messages import (
|
|
AIMessage,
|
|
AIMessageChunk,
|
|
BaseMessage,
|
|
BaseMessageChunk,
|
|
HumanMessage,
|
|
SystemMessage,
|
|
)
|
|
from langchain_core.outputs import ChatGeneration, LLMResult
|
|
from langchain_core.pydantic_v1 import BaseModel, Field
|
|
|
|
from langchain_groq import ChatGroq
|
|
from tests.unit_tests.fake.callbacks import (
|
|
FakeCallbackHandler,
|
|
FakeCallbackHandlerWithChatStart,
|
|
)
|
|
|
|
|
|
#
|
|
# Smoke test Runnable interface
|
|
#
|
|
@pytest.mark.scheduled
|
|
def test_invoke() -> None:
|
|
"""Test Chat wrapper."""
|
|
chat = ChatGroq( # type: ignore[call-arg]
|
|
temperature=0.7,
|
|
base_url=None,
|
|
groq_proxy=None,
|
|
timeout=10.0,
|
|
max_retries=3,
|
|
http_client=None,
|
|
n=1,
|
|
max_tokens=10,
|
|
default_headers=None,
|
|
default_query=None,
|
|
)
|
|
message = HumanMessage(content="Welcome to the Groqetship")
|
|
response = chat.invoke([message])
|
|
assert isinstance(response, BaseMessage)
|
|
assert isinstance(response.content, str)
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
async def test_ainvoke() -> None:
|
|
"""Test ainvoke tokens from ChatGroq."""
|
|
chat = ChatGroq(max_tokens=10) # type: ignore[call-arg]
|
|
|
|
result = await chat.ainvoke("Welcome to the Groqetship!", config={"tags": ["foo"]})
|
|
assert isinstance(result, BaseMessage)
|
|
assert isinstance(result.content, str)
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
def test_batch() -> None:
|
|
"""Test batch tokens from ChatGroq."""
|
|
chat = ChatGroq(max_tokens=10) # type: ignore[call-arg]
|
|
|
|
result = chat.batch(["Hello!", "Welcome to the Groqetship!"])
|
|
for token in result:
|
|
assert isinstance(token, BaseMessage)
|
|
assert isinstance(token.content, str)
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
async def test_abatch() -> None:
|
|
"""Test abatch tokens from ChatGroq."""
|
|
chat = ChatGroq(max_tokens=10) # type: ignore[call-arg]
|
|
|
|
result = await chat.abatch(["Hello!", "Welcome to the Groqetship!"])
|
|
for token in result:
|
|
assert isinstance(token, BaseMessage)
|
|
assert isinstance(token.content, str)
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
async def test_stream() -> None:
|
|
"""Test streaming tokens from Groq."""
|
|
chat = ChatGroq(max_tokens=10) # type: ignore[call-arg]
|
|
|
|
for token in chat.stream("Welcome to the Groqetship!"):
|
|
assert isinstance(token, BaseMessageChunk)
|
|
assert isinstance(token.content, str)
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
async def test_astream() -> None:
|
|
"""Test streaming tokens from Groq."""
|
|
chat = ChatGroq(max_tokens=10) # type: ignore[call-arg]
|
|
|
|
full: Optional[BaseMessageChunk] = None
|
|
chunks_with_token_counts = 0
|
|
async for token in chat.astream("Welcome to the Groqetship!"):
|
|
assert isinstance(token, AIMessageChunk)
|
|
assert isinstance(token.content, str)
|
|
full = token if full is None else full + token
|
|
if token.usage_metadata is not None:
|
|
chunks_with_token_counts += 1
|
|
if chunks_with_token_counts != 1:
|
|
raise AssertionError(
|
|
"Expected exactly one chunk with token counts. "
|
|
"AIMessageChunk aggregation adds counts. Check that "
|
|
"this is behaving properly."
|
|
)
|
|
assert isinstance(full, AIMessageChunk)
|
|
assert full.usage_metadata is not None
|
|
assert full.usage_metadata["input_tokens"] > 0
|
|
assert full.usage_metadata["output_tokens"] > 0
|
|
assert (
|
|
full.usage_metadata["input_tokens"] + full.usage_metadata["output_tokens"]
|
|
== full.usage_metadata["total_tokens"]
|
|
)
|
|
|
|
|
|
#
|
|
# Test Legacy generate methods
|
|
#
|
|
@pytest.mark.scheduled
|
|
def test_generate() -> None:
|
|
"""Test sync generate."""
|
|
n = 1
|
|
chat = ChatGroq(max_tokens=10) # type: ignore[call-arg]
|
|
message = HumanMessage(content="Hello", n=1)
|
|
response = chat.generate([[message], [message]])
|
|
assert isinstance(response, LLMResult)
|
|
assert len(response.generations) == 2
|
|
assert response.llm_output
|
|
assert response.llm_output["model_name"] == chat.model_name
|
|
for generations in response.generations:
|
|
assert len(generations) == n
|
|
for generation in generations:
|
|
assert isinstance(generation, ChatGeneration)
|
|
assert isinstance(generation.text, str)
|
|
assert generation.text == generation.message.content
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
async def test_agenerate() -> None:
|
|
"""Test async generation."""
|
|
n = 1
|
|
chat = ChatGroq(max_tokens=10, n=1) # type: ignore[call-arg]
|
|
message = HumanMessage(content="Hello")
|
|
response = await chat.agenerate([[message], [message]])
|
|
assert isinstance(response, LLMResult)
|
|
assert len(response.generations) == 2
|
|
assert response.llm_output
|
|
assert response.llm_output["model_name"] == chat.model_name
|
|
for generations in response.generations:
|
|
assert len(generations) == n
|
|
for generation in generations:
|
|
assert isinstance(generation, ChatGeneration)
|
|
assert isinstance(generation.text, str)
|
|
assert generation.text == generation.message.content
|
|
|
|
|
|
#
|
|
# Test streaming flags in invoke and generate
|
|
#
|
|
@pytest.mark.scheduled
|
|
def test_invoke_streaming() -> None:
|
|
"""Test that streaming correctly invokes on_llm_new_token callback."""
|
|
callback_handler = FakeCallbackHandler()
|
|
chat = ChatGroq( # type: ignore[call-arg]
|
|
max_tokens=2,
|
|
streaming=True,
|
|
temperature=0,
|
|
callbacks=[callback_handler],
|
|
)
|
|
message = HumanMessage(content="Welcome to the Groqetship")
|
|
response = chat.invoke([message])
|
|
assert callback_handler.llm_streams > 0
|
|
assert isinstance(response, BaseMessage)
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
async def test_agenerate_streaming() -> None:
|
|
"""Test that streaming correctly invokes on_llm_new_token callback."""
|
|
callback_handler = FakeCallbackHandlerWithChatStart()
|
|
chat = ChatGroq( # type: ignore[call-arg]
|
|
max_tokens=10,
|
|
streaming=True,
|
|
temperature=0,
|
|
callbacks=[callback_handler],
|
|
)
|
|
message = HumanMessage(content="Welcome to the Groqetship")
|
|
response = await chat.agenerate([[message], [message]])
|
|
assert callback_handler.llm_streams > 0
|
|
assert isinstance(response, LLMResult)
|
|
assert len(response.generations) == 2
|
|
assert response.llm_output is not None
|
|
assert response.llm_output["model_name"] == chat.model_name
|
|
for generations in response.generations:
|
|
assert len(generations) == 1
|
|
for generation in generations:
|
|
assert isinstance(generation, ChatGeneration)
|
|
assert isinstance(generation.text, str)
|
|
assert generation.text == generation.message.content
|
|
|
|
|
|
#
|
|
# Misc tests
|
|
#
|
|
def test_streaming_generation_info() -> None:
|
|
"""Test that generation info is preserved when streaming."""
|
|
|
|
class _FakeCallback(FakeCallbackHandler):
|
|
saved_things: dict = {}
|
|
|
|
def on_llm_end(
|
|
self,
|
|
*args: Any,
|
|
**kwargs: Any,
|
|
) -> Any:
|
|
# Save the generation
|
|
self.saved_things["generation"] = args[0]
|
|
|
|
callback = _FakeCallback()
|
|
chat = ChatGroq( # type: ignore[call-arg]
|
|
max_tokens=2,
|
|
temperature=0,
|
|
callbacks=[callback],
|
|
)
|
|
list(chat.stream("Respond with the single word Hello", stop=["o"]))
|
|
generation = callback.saved_things["generation"]
|
|
# `Hello!` is two tokens, assert that that is what is returned
|
|
assert isinstance(generation, LLMResult)
|
|
assert generation.generations[0][0].text == "Hell"
|
|
|
|
|
|
def test_system_message() -> None:
|
|
"""Test ChatGroq wrapper with system message."""
|
|
chat = ChatGroq(max_tokens=10) # type: ignore[call-arg]
|
|
system_message = SystemMessage(content="You are to chat with the user.")
|
|
human_message = HumanMessage(content="Hello")
|
|
response = chat.invoke([system_message, human_message])
|
|
assert isinstance(response, BaseMessage)
|
|
assert isinstance(response.content, str)
|
|
|
|
|
|
@pytest.mark.xfail(reason="Groq tool_choice doesn't currently force a tool call")
|
|
def test_tool_choice() -> None:
|
|
"""Test that tool choice is respected."""
|
|
llm = ChatGroq() # type: ignore[call-arg]
|
|
|
|
class MyTool(BaseModel):
|
|
name: str
|
|
age: int
|
|
|
|
with_tool = llm.bind_tools([MyTool], tool_choice="MyTool")
|
|
|
|
resp = with_tool.invoke("Who was the 27 year old named Erick?")
|
|
assert isinstance(resp, AIMessage)
|
|
assert resp.content == "" # should just be tool call
|
|
tool_calls = resp.additional_kwargs["tool_calls"]
|
|
assert len(tool_calls) == 1
|
|
tool_call = tool_calls[0]
|
|
assert tool_call["function"]["name"] == "MyTool"
|
|
assert json.loads(tool_call["function"]["arguments"]) == {
|
|
"age": 27,
|
|
"name": "Erick",
|
|
}
|
|
assert tool_call["type"] == "function"
|
|
|
|
assert isinstance(resp.tool_calls, list)
|
|
assert len(resp.tool_calls) == 1
|
|
tool_call = resp.tool_calls[0]
|
|
assert tool_call["name"] == "MyTool"
|
|
assert tool_call["args"] == {"name": "Erick", "age": 27}
|
|
|
|
|
|
@pytest.mark.xfail(reason="Groq tool_choice doesn't currently force a tool call")
|
|
def test_tool_choice_bool() -> None:
|
|
"""Test that tool choice is respected just passing in True."""
|
|
llm = ChatGroq() # type: ignore[call-arg]
|
|
|
|
class MyTool(BaseModel):
|
|
name: str
|
|
age: int
|
|
|
|
with_tool = llm.bind_tools([MyTool], tool_choice=True)
|
|
|
|
resp = with_tool.invoke("Who was the 27 year old named Erick?")
|
|
assert isinstance(resp, AIMessage)
|
|
assert resp.content == "" # should just be tool call
|
|
tool_calls = resp.additional_kwargs["tool_calls"]
|
|
assert len(tool_calls) == 1
|
|
tool_call = tool_calls[0]
|
|
assert tool_call["function"]["name"] == "MyTool"
|
|
assert json.loads(tool_call["function"]["arguments"]) == {
|
|
"age": 27,
|
|
"name": "Erick",
|
|
}
|
|
assert tool_call["type"] == "function"
|
|
|
|
|
|
@pytest.mark.xfail(reason="Groq tool_choice doesn't currently force a tool call")
|
|
def test_streaming_tool_call() -> None:
|
|
"""Test that tool choice is respected."""
|
|
llm = ChatGroq() # type: ignore[call-arg]
|
|
|
|
class MyTool(BaseModel):
|
|
name: str
|
|
age: int
|
|
|
|
with_tool = llm.bind_tools([MyTool], tool_choice="MyTool")
|
|
|
|
resp = with_tool.stream("Who was the 27 year old named Erick?")
|
|
additional_kwargs = None
|
|
for chunk in resp:
|
|
assert isinstance(chunk, AIMessageChunk)
|
|
assert chunk.content == "" # should just be tool call
|
|
additional_kwargs = chunk.additional_kwargs
|
|
|
|
assert additional_kwargs is not None
|
|
tool_calls = additional_kwargs["tool_calls"]
|
|
assert len(tool_calls) == 1
|
|
tool_call = tool_calls[0]
|
|
assert tool_call["function"]["name"] == "MyTool"
|
|
assert json.loads(tool_call["function"]["arguments"]) == {
|
|
"age": 27,
|
|
"name": "Erick",
|
|
}
|
|
assert tool_call["type"] == "function"
|
|
|
|
assert isinstance(chunk, AIMessageChunk)
|
|
assert isinstance(chunk.tool_call_chunks, list)
|
|
assert len(chunk.tool_call_chunks) == 1
|
|
tool_call_chunk = chunk.tool_call_chunks[0]
|
|
assert tool_call_chunk["name"] == "MyTool"
|
|
assert isinstance(tool_call_chunk["args"], str)
|
|
assert json.loads(tool_call_chunk["args"]) == {"name": "Erick", "age": 27}
|
|
|
|
|
|
@pytest.mark.xfail(reason="Groq tool_choice doesn't currently force a tool call")
|
|
async def test_astreaming_tool_call() -> None:
|
|
"""Test that tool choice is respected."""
|
|
llm = ChatGroq() # type: ignore[call-arg]
|
|
|
|
class MyTool(BaseModel):
|
|
name: str
|
|
age: int
|
|
|
|
with_tool = llm.bind_tools([MyTool], tool_choice="MyTool")
|
|
|
|
resp = with_tool.astream("Who was the 27 year old named Erick?")
|
|
additional_kwargs = None
|
|
async for chunk in resp:
|
|
assert isinstance(chunk, AIMessageChunk)
|
|
assert chunk.content == "" # should just be tool call
|
|
additional_kwargs = chunk.additional_kwargs
|
|
|
|
assert additional_kwargs is not None
|
|
tool_calls = additional_kwargs["tool_calls"]
|
|
assert len(tool_calls) == 1
|
|
tool_call = tool_calls[0]
|
|
assert tool_call["function"]["name"] == "MyTool"
|
|
assert json.loads(tool_call["function"]["arguments"]) == {
|
|
"age": 27,
|
|
"name": "Erick",
|
|
}
|
|
assert tool_call["type"] == "function"
|
|
|
|
assert isinstance(chunk, AIMessageChunk)
|
|
assert isinstance(chunk.tool_call_chunks, list)
|
|
assert len(chunk.tool_call_chunks) == 1
|
|
tool_call_chunk = chunk.tool_call_chunks[0]
|
|
assert tool_call_chunk["name"] == "MyTool"
|
|
assert isinstance(tool_call_chunk["args"], str)
|
|
assert json.loads(tool_call_chunk["args"]) == {"name": "Erick", "age": 27}
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
def test_json_mode_structured_output() -> None:
|
|
"""Test with_structured_output with json"""
|
|
|
|
class Joke(BaseModel):
|
|
"""Joke to tell user."""
|
|
|
|
setup: str = Field(description="question to set up a joke")
|
|
punchline: str = Field(description="answer to resolve the joke")
|
|
|
|
chat = ChatGroq().with_structured_output(Joke, method="json_mode") # type: ignore[call-arg]
|
|
result = chat.invoke(
|
|
"Tell me a joke about cats, respond in JSON with `setup` and `punchline` keys"
|
|
)
|
|
assert type(result) == Joke
|
|
assert len(result.setup) != 0
|
|
assert len(result.punchline) != 0
|
|
|
|
|
|
# Groq does not currently support N > 1
|
|
# @pytest.mark.scheduled
|
|
# def test_chat_multiple_completions() -> None:
|
|
# """Test ChatGroq wrapper with multiple completions."""
|
|
# chat = ChatGroq(max_tokens=10, n=5)
|
|
# message = HumanMessage(content="Hello")
|
|
# response = chat._generate([message])
|
|
# assert isinstance(response, ChatResult)
|
|
# assert len(response.generations) == 5
|
|
# for generation in response.generations:
|
|
# assert isinstance(generation.message, BaseMessage)
|
|
# assert isinstance(generation.message.content, str)
|