mirror of
https://github.com/hwchase17/langchain
synced 2024-10-29 17:07:25 +00:00
b96ab4b763
# Docs: improvements in the `retrievers/examples/` notebooks Its primary purpose is to make the Jupyter notebook examples **consistent** and more suitable for first-time viewers. - add links to the integration source (if applicable) with a short description of this source; - removed `_retriever` suffix from the file names (where it existed) for consistency; - removed ` retriever` from the notebook title (where it existed) for consistency; - added code to install necessary Python package(s); - added code to set up the necessary API Key. - very small fixes in notebooks from other folders (for consistency): - docs/modules/indexes/vectorstores/examples/elasticsearch.ipynb - docs/modules/indexes/vectorstores/examples/pinecone.ipynb - docs/modules/models/llms/integrations/cohere.ipynb - fixed misspelling in langchain/retrievers/time_weighted_retriever.py comment (sorry, about this change in a .py file ) ## Who can review @dev2049
139 lines
3.6 KiB
Plaintext
139 lines
3.6 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "ce0f17b9",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Vespa\n",
|
|
"\n",
|
|
">[Vespa](https://vespa.ai/) is a fully featured search engine and vector database. It supports vector search (ANN), lexical search, and search in structured data, all in the same query.\n",
|
|
"\n",
|
|
"This notebook shows how to use `Vespa.ai` as a LangChain retriever.\n",
|
|
"\n",
|
|
"In order to create a retriever, we use [pyvespa](https://pyvespa.readthedocs.io/en/latest/index.html) to\n",
|
|
"create a connection a `Vespa` service."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "7e6a11ab-38bd-4920-ba11-60cb2f075754",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"#!pip install pyvespa"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "c10dd962",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"from vespa.application import Vespa\n",
|
|
"\n",
|
|
"vespa_app = Vespa(url=\"https://doc-search.vespa.oath.cloud\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "3df4ce53",
|
|
"metadata": {},
|
|
"source": [
|
|
"This creates a connection to a `Vespa` service, here the Vespa documentation search service.\n",
|
|
"Using `pyvespa` package, you can also connect to a\n",
|
|
"[Vespa Cloud instance](https://pyvespa.readthedocs.io/en/latest/deploy-vespa-cloud.html)\n",
|
|
"or a local\n",
|
|
"[Docker instance](https://pyvespa.readthedocs.io/en/latest/deploy-docker.html).\n",
|
|
"\n",
|
|
"\n",
|
|
"After connecting to the service, you can set up the retriever:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "7ccca1f4",
|
|
"metadata": {
|
|
"pycharm": {
|
|
"name": "#%%\n"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.retrievers.vespa_retriever import VespaRetriever\n",
|
|
"\n",
|
|
"vespa_query_body = {\n",
|
|
" \"yql\": \"select content from paragraph where userQuery()\",\n",
|
|
" \"hits\": 5,\n",
|
|
" \"ranking\": \"documentation\",\n",
|
|
" \"locale\": \"en-us\"\n",
|
|
"}\n",
|
|
"vespa_content_field = \"content\"\n",
|
|
"retriever = VespaRetriever(vespa_app, vespa_query_body, vespa_content_field)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "1e7e34e1",
|
|
"metadata": {
|
|
"pycharm": {
|
|
"name": "#%% md\n"
|
|
}
|
|
},
|
|
"source": [
|
|
"This sets up a LangChain retriever that fetches documents from the Vespa application.\n",
|
|
"Here, up to 5 results are retrieved from the `content` field in the `paragraph` document type,\n",
|
|
"using `doumentation` as the ranking method. The `userQuery()` is replaced with the actual query\n",
|
|
"passed from LangChain.\n",
|
|
"\n",
|
|
"Please refer to the [pyvespa documentation](https://pyvespa.readthedocs.io/en/latest/getting-started-pyvespa.html#Query)\n",
|
|
"for more information.\n",
|
|
"\n",
|
|
"Now you can return the results and continue using the results in LangChain."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "f47a2bfe",
|
|
"metadata": {
|
|
"pycharm": {
|
|
"name": "#%%\n"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"retriever.get_relevant_documents(\"what is vespa?\")"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.10.6"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|