Go to file
Vardhaman 15e53a99b2
docs: updated wrong output in Upstash Redis Cache section of LLM Ca… (#15140)
…ching documentation

<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->


- **Description:** Fixed the wrong output and code block comment in
`Upstash Redis` Cache section of LLM Caching documentation,
  - **Issue:** #15139 ,
  - **Dependencies:** N/A,
- **Twitter handle:** [@vardhaman722](https://twitter.com/vardhaman722)
2023-12-26 13:08:21 -08:00
.devcontainer Update README.md (#8570) 2023-11-12 22:07:49 -08:00
.github Corrected an grammatical mistake (#15163) 2023-12-26 11:06:53 -08:00
cookbook fix: correct spelling mistakes of "seperate, intialise, pre-defined" (#14647) 2023-12-22 11:49:35 -08:00
docker Update Dockerfile.base (#11556) 2023-10-09 16:43:04 +01:00
docs docs: updated wrong output in Upstash Redis Cache section of LLM Ca… (#15140) 2023-12-26 13:08:21 -08:00
libs Refactor: use SecretStr for Predibase llms (#15119) 2023-12-26 13:01:42 -08:00
templates docs: Update templates README.md (#15013) 2023-12-21 12:04:05 -05:00
.gitattributes Update dev container (#6189) 2023-06-16 15:42:14 -07:00
.gitignore API Reference building script update (#13587) 2023-12-07 11:43:42 -08:00
.readthedocs.yaml infra: api docs build order (#15018) 2023-12-21 11:05:02 -08:00
CITATION.cff rename repo namespace to langchain-ai (#11259) 2023-10-01 15:30:58 -04:00
LICENSE Library Licenses (#13300) 2023-11-28 17:34:27 -08:00
Makefile core[patch], langchain[patch]: fix required deps (#14373) 2023-12-07 14:24:58 -08:00
MIGRATE.md Update main readme (#13298) 2023-11-13 17:37:54 -08:00
poetry.lock Add Runnable.get_graph() to get a graph representation of a Runnable (#15040) 2023-12-22 11:40:45 -08:00
poetry.toml Unbreak devcontainer (#8154) 2023-07-23 19:33:47 -07:00
pyproject.toml community[major], core[patch], langchain[patch], experimental[patch]: Create langchain-community (#14463) 2023-12-11 13:53:30 -08:00
README.md Oxford comma, consistent with format elsewhere (#15167) 2023-12-26 11:07:09 -08:00
SECURITY.md Update SECURITY.md email address. (#9558) 2023-08-21 14:52:21 -04:00

🦜🔗 LangChain

Building applications with LLMs through composability

Release Notes CI Downloads License: MIT Twitter Open in Dev Containers Open in GitHub Codespaces GitHub star chart Dependency Status Open Issues

Looking for the JS/TS library? Check out LangChain.js.

To help you ship LangChain apps to production faster, check out LangSmith. LangSmith is a unified developer platform for building, testing, and monitoring LLM applications. Fill out this form to get off the waitlist or speak with our sales team.

Quick Install

With pip:

pip install langchain

With conda:

conda install langchain -c conda-forge

🤔 What is LangChain?

LangChain is a framework for developing applications powered by language models. It enables applications that:

  • Are context-aware: connect a language model to sources of context (prompt instructions, few shot examples, content to ground its response in, etc.)
  • Reason: rely on a language model to reason (about how to answer based on provided context, what actions to take, etc.)

This framework consists of several parts.

  • LangChain Libraries: The Python and JavaScript libraries. Contains interfaces and integrations for a myriad of components, a basic run time for combining these components into chains and agents, and off-the-shelf implementations of chains and agents.
  • LangChain Templates: A collection of easily deployable reference architectures for a wide variety of tasks.
  • LangServe: A library for deploying LangChain chains as a REST API.
  • LangSmith: A developer platform that lets you debug, test, evaluate, and monitor chains built on any LLM framework and seamlessly integrates with LangChain.

The LangChain libraries themselves are made up of several different packages.

  • langchain-core: Base abstractions and LangChain Expression Language.
  • langchain-community: Third party integrations.
  • langchain: Chains, agents, and retrieval strategies that make up an application's cognitive architecture.

LangChain Stack

🧱 What can you build with LangChain?

Retrieval augmented generation

💬 Analyzing structured data

🤖 Chatbots

And much more! Head to the Use cases section of the docs for more.

🚀 How does LangChain help?

The main value props of the LangChain libraries are:

  1. Components: composable tools and integrations for working with language models. Components are modular and easy-to-use, whether you are using the rest of the LangChain framework or not
  2. Off-the-shelf chains: built-in assemblages of components for accomplishing higher-level tasks

Off-the-shelf chains make it easy to get started. Components make it easy to customize existing chains and build new ones.

Components fall into the following modules:

📃 Model I/O:

This includes prompt management, prompt optimization, a generic interface for all LLMs, and common utilities for working with LLMs.

📚 Retrieval:

Data Augmented Generation involves specific types of chains that first interact with an external data source to fetch data for use in the generation step. Examples include summarization of long pieces of text and question/answering over specific data sources.

🤖 Agents:

Agents involve an LLM making decisions about which Actions to take, taking that Action, seeing an Observation, and repeating that until done. LangChain provides a standard interface for agents, a selection of agents to choose from, and examples of end-to-end agents.

📖 Documentation

Please see here for full documentation, which includes:

💁 Contributing

As an open-source project in a rapidly developing field, we are extremely open to contributions, whether it be in the form of a new feature, improved infrastructure, or better documentation.

For detailed information on how to contribute, see here.

🌟 Contributors

langchain contributors