mirror of
https://github.com/hwchase17/langchain
synced 2024-11-02 09:40:22 +00:00
97 lines
3.2 KiB
Python
97 lines
3.2 KiB
Python
from langchain_community.chat_models import ChatOpenAI
|
||
from langchain_core.output_parsers import StrOutputParser
|
||
from langchain_core.prompts import ChatPromptTemplate
|
||
from langchain_core.pydantic_v1 import BaseModel
|
||
from langchain_core.runnables import RunnablePassthrough
|
||
|
||
skeleton_generator_template = """[User:] You’re an organizer responsible for only \
|
||
giving the skeleton (not the full content) for answering the question.
|
||
Provide the skeleton in a list of points (numbered 1., 2., 3., etc.) to answer \
|
||
the question. \
|
||
Instead of writing a full sentence, each skeleton point should be very short \
|
||
with only 3∼5 words. \
|
||
Generally, the skeleton should have 3∼10 points. Now, please provide the skeleton \
|
||
for the following question.
|
||
{question}
|
||
Skeleton:
|
||
[Assistant:] 1."""
|
||
|
||
skeleton_generator_prompt = ChatPromptTemplate.from_template(
|
||
skeleton_generator_template
|
||
)
|
||
|
||
skeleton_generator_chain = (
|
||
skeleton_generator_prompt | ChatOpenAI() | StrOutputParser() | (lambda x: "1. " + x)
|
||
)
|
||
|
||
point_expander_template = """[User:] You’re responsible for continuing \
|
||
the writing of one and only one point in the overall answer to the following question.
|
||
{question}
|
||
The skeleton of the answer is
|
||
{skeleton}
|
||
Continue and only continue the writing of point {point_index}. \
|
||
Write it **very shortly** in 1∼2 sentence and do not continue with other points!
|
||
[Assistant:] {point_index}. {point_skeleton}"""
|
||
|
||
point_expander_prompt = ChatPromptTemplate.from_template(point_expander_template)
|
||
|
||
point_expander_chain = RunnablePassthrough.assign(
|
||
continuation=point_expander_prompt | ChatOpenAI() | StrOutputParser()
|
||
) | (lambda x: x["point_skeleton"].strip() + " " + x["continuation"])
|
||
|
||
|
||
def parse_numbered_list(input_str):
|
||
"""Parses a numbered list into a list of dictionaries
|
||
|
||
Each element having two keys:
|
||
'index' for the index in the numbered list, and 'point' for the content.
|
||
"""
|
||
# Split the input string into lines
|
||
lines = input_str.split("\n")
|
||
|
||
# Initialize an empty list to store the parsed items
|
||
parsed_list = []
|
||
|
||
for line in lines:
|
||
# Split each line at the first period to separate the index from the content
|
||
parts = line.split(". ", 1)
|
||
|
||
if len(parts) == 2:
|
||
# Convert the index part to an integer
|
||
# and strip any whitespace from the content
|
||
index = int(parts[0])
|
||
point = parts[1].strip()
|
||
|
||
# Add a dictionary to the parsed list
|
||
parsed_list.append({"point_index": index, "point_skeleton": point})
|
||
|
||
return parsed_list
|
||
|
||
|
||
def create_list_elements(_input):
|
||
skeleton = _input["skeleton"]
|
||
numbered_list = parse_numbered_list(skeleton)
|
||
for el in numbered_list:
|
||
el["skeleton"] = skeleton
|
||
el["question"] = _input["question"]
|
||
return numbered_list
|
||
|
||
|
||
def get_final_answer(expanded_list):
|
||
final_answer_str = "Here's a comprehensive answer:\n\n"
|
||
for i, el in enumerate(expanded_list):
|
||
final_answer_str += f"{i+1}. {el}\n\n"
|
||
return final_answer_str
|
||
|
||
|
||
class ChainInput(BaseModel):
|
||
question: str
|
||
|
||
|
||
chain = (
|
||
RunnablePassthrough.assign(skeleton=skeleton_generator_chain)
|
||
| create_list_elements
|
||
| point_expander_chain.map()
|
||
| get_final_answer
|
||
).with_types(input_type=ChainInput)
|