mirror of
https://github.com/hwchase17/langchain
synced 2024-11-02 09:40:22 +00:00
ed789be8f4
- chat models, messages - documents - agentaction/finish - baseretriever,document - stroutputparser - more messages - basemessage - format_document - baseoutputparser --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
72 lines
2.4 KiB
Python
72 lines
2.4 KiB
Python
from typing import List, Tuple
|
|
|
|
from langchain.agents import AgentExecutor
|
|
from langchain.agents.format_scratchpad import format_to_openai_function_messages
|
|
from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser
|
|
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
|
|
from langchain.pydantic_v1 import BaseModel, Field
|
|
from langchain.tools.render import format_tool_to_openai_function
|
|
from langchain_community.chat_models import ChatOpenAI
|
|
from langchain_core.messages import AIMessage, HumanMessage
|
|
|
|
from neo4j_semantic_layer.information_tool import InformationTool
|
|
from neo4j_semantic_layer.memory_tool import MemoryTool
|
|
from neo4j_semantic_layer.recommendation_tool import RecommenderTool
|
|
|
|
llm = ChatOpenAI(temperature=0, model="gpt-4")
|
|
tools = [InformationTool(), RecommenderTool(), MemoryTool()]
|
|
|
|
llm_with_tools = llm.bind(functions=[format_tool_to_openai_function(t) for t in tools])
|
|
|
|
prompt = ChatPromptTemplate.from_messages(
|
|
[
|
|
(
|
|
"system",
|
|
"You are a helpful assistant that finds information about movies "
|
|
" and recommends them. If tools require follow up questions, "
|
|
"make sure to ask the user for clarification. Make sure to include any "
|
|
"available options that need to be clarified in the follow up questions",
|
|
),
|
|
MessagesPlaceholder(variable_name="chat_history"),
|
|
("user", "{input}"),
|
|
MessagesPlaceholder(variable_name="agent_scratchpad"),
|
|
]
|
|
)
|
|
|
|
|
|
def _format_chat_history(chat_history: List[Tuple[str, str]]):
|
|
buffer = []
|
|
for human, ai in chat_history:
|
|
buffer.append(HumanMessage(content=human))
|
|
buffer.append(AIMessage(content=ai))
|
|
return buffer
|
|
|
|
|
|
agent = (
|
|
{
|
|
"input": lambda x: x["input"],
|
|
"chat_history": lambda x: (
|
|
_format_chat_history(x["chat_history"]) if x.get("chat_history") else []
|
|
),
|
|
"agent_scratchpad": lambda x: format_to_openai_function_messages(
|
|
x["intermediate_steps"]
|
|
),
|
|
}
|
|
| prompt
|
|
| llm_with_tools
|
|
| OpenAIFunctionsAgentOutputParser()
|
|
)
|
|
|
|
|
|
# Add typing for input
|
|
class AgentInput(BaseModel):
|
|
input: str
|
|
chat_history: List[Tuple[str, str]] = Field(
|
|
..., extra={"widget": {"type": "chat", "input": "input", "output": "output"}}
|
|
)
|
|
|
|
|
|
agent_executor = AgentExecutor(agent=agent, tools=tools).with_types(
|
|
input_type=AgentInput
|
|
)
|