mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
790ea75cf7
Added 3 files : - Library : ExLlamaV2 - Test integration - Notebook --------- Co-authored-by: Bagatur <baskaryan@gmail.com> Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
200 lines
6.3 KiB
Python
200 lines
6.3 KiB
Python
from typing import Any, Dict, Iterator, List, Optional
|
|
|
|
from langchain_core.callbacks import CallbackManagerForLLMRun
|
|
from langchain_core.language_models import LLM
|
|
from langchain_core.outputs import GenerationChunk
|
|
from langchain_core.pydantic_v1 import Field, root_validator
|
|
|
|
|
|
class ExLlamaV2(LLM):
|
|
"""ExllamaV2 API.
|
|
|
|
- working only with GPTQ models for now.
|
|
- Lora models are not supported yet.
|
|
|
|
To use, you should have the exllamav2 library installed, and provide the
|
|
path to the Llama model as a named parameter to the constructor.
|
|
Check out:
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.llms import Exllamav2
|
|
|
|
llm = Exllamav2(model_path="/path/to/llama/model")
|
|
|
|
#TODO:
|
|
- Add loras support
|
|
- Add support for custom settings
|
|
- Add support for custom stop sequences
|
|
"""
|
|
|
|
client: Any
|
|
model_path: str
|
|
exllama_cache: Any = None
|
|
config: Any = None
|
|
generator: Any = None
|
|
tokenizer: Any = None
|
|
# If settings is None, it will be used as the default settings for the model.
|
|
# All other parameters won't be used.
|
|
settings: Any = None
|
|
|
|
# Langchain parameters
|
|
logfunc = print
|
|
|
|
stop_sequences: List[str] = Field("")
|
|
"""Sequences that immediately will stop the generator."""
|
|
|
|
max_new_tokens: int = Field(150)
|
|
"""Maximum number of tokens to generate."""
|
|
|
|
streaming: bool = Field(True)
|
|
"""Whether to stream the results, token by token."""
|
|
|
|
verbose: bool = Field(True)
|
|
"""Whether to print debug information."""
|
|
|
|
# Generator parameters
|
|
disallowed_tokens: List[int] = Field(None)
|
|
"""List of tokens to disallow during generation."""
|
|
|
|
@root_validator()
|
|
def validate_environment(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
|
try:
|
|
import torch
|
|
except ImportError as e:
|
|
raise ImportError(
|
|
"Unable to import torch, please install with `pip install torch`."
|
|
) from e
|
|
# check if cuda is available
|
|
if not torch.cuda.is_available():
|
|
raise EnvironmentError("CUDA is not available. ExllamaV2 requires CUDA.")
|
|
try:
|
|
from exllamav2 import (
|
|
ExLlamaV2,
|
|
ExLlamaV2Cache,
|
|
ExLlamaV2Config,
|
|
ExLlamaV2Tokenizer,
|
|
)
|
|
from exllamav2.generator import (
|
|
ExLlamaV2BaseGenerator,
|
|
ExLlamaV2StreamingGenerator,
|
|
)
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import exllamav2 library. "
|
|
"Please install the exllamav2 library with (cuda 12.1 is required)"
|
|
"example : "
|
|
"!python -m pip install https://github.com/turboderp/exllamav2/releases/download/v0.0.12/exllamav2-0.0.12+cu121-cp311-cp311-linux_x86_64.whl"
|
|
)
|
|
|
|
# Set logging function if verbose or set to empty lambda
|
|
verbose = values["verbose"]
|
|
if not verbose:
|
|
values["logfunc"] = lambda *args, **kwargs: None
|
|
logfunc = values["logfunc"]
|
|
|
|
if values["settings"]:
|
|
settings = values["settings"]
|
|
logfunc(settings.__dict__)
|
|
else:
|
|
raise NotImplementedError(
|
|
"settings is required. Custom settings are not supported yet."
|
|
)
|
|
|
|
config = ExLlamaV2Config()
|
|
config.model_dir = values["model_path"]
|
|
config.prepare()
|
|
|
|
model = ExLlamaV2(config)
|
|
|
|
exllama_cache = ExLlamaV2Cache(model, lazy=True)
|
|
model.load_autosplit(exllama_cache)
|
|
|
|
tokenizer = ExLlamaV2Tokenizer(config)
|
|
if values["streaming"]:
|
|
generator = ExLlamaV2StreamingGenerator(model, exllama_cache, tokenizer)
|
|
else:
|
|
generator = ExLlamaV2BaseGenerator(model, exllama_cache, tokenizer)
|
|
|
|
# Configure the model and generator
|
|
values["stop_sequences"] = [x.strip().lower() for x in values["stop_sequences"]]
|
|
setattr(settings, "stop_sequences", values["stop_sequences"])
|
|
logfunc(f"stop_sequences {values['stop_sequences']}")
|
|
|
|
disallowed = values.get("disallowed_tokens")
|
|
if disallowed:
|
|
settings.disallow_tokens(tokenizer, disallowed)
|
|
|
|
values["client"] = model
|
|
values["generator"] = generator
|
|
values["config"] = config
|
|
values["tokenizer"] = tokenizer
|
|
values["exllama_cache"] = exllama_cache
|
|
|
|
return values
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of llm."""
|
|
return "ExLlamaV2"
|
|
|
|
def get_num_tokens(self, text: str) -> int:
|
|
"""Get the number of tokens present in the text."""
|
|
return self.generator.tokenizer.num_tokens(text)
|
|
|
|
def _call(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> str:
|
|
generator = self.generator
|
|
|
|
if self.streaming:
|
|
combined_text_output = ""
|
|
for chunk in self._stream(
|
|
prompt=prompt, stop=stop, run_manager=run_manager, kwargs=kwargs
|
|
):
|
|
combined_text_output += str(chunk)
|
|
return combined_text_output
|
|
else:
|
|
output = generator.generate_simple(
|
|
prompt=prompt,
|
|
gen_settings=self.settings,
|
|
num_tokens=self.max_new_tokens,
|
|
)
|
|
# subtract subtext from output
|
|
output = output[len(prompt) :]
|
|
return output
|
|
|
|
def _stream(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> Iterator[GenerationChunk]:
|
|
input_ids = self.tokenizer.encode(prompt)
|
|
self.generator.warmup()
|
|
self.generator.set_stop_conditions([])
|
|
self.generator.begin_stream(input_ids, self.settings)
|
|
|
|
generated_tokens = 0
|
|
|
|
while True:
|
|
chunk, eos, _ = self.generator.stream()
|
|
generated_tokens += 1
|
|
|
|
if run_manager:
|
|
run_manager.on_llm_new_token(
|
|
token=chunk,
|
|
verbose=self.verbose,
|
|
)
|
|
yield chunk
|
|
if eos or generated_tokens == self.max_new_tokens:
|
|
break
|
|
|
|
return
|