mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
8aa921d3a4
Description: Add support for setting the `score_threshold` for similarity search in SupabaseVectoreStore. This pull request addresses issue #14438 Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
481 lines
15 KiB
Python
481 lines
15 KiB
Python
from __future__ import annotations
|
|
|
|
import uuid
|
|
import warnings
|
|
from itertools import repeat
|
|
from typing import (
|
|
TYPE_CHECKING,
|
|
Any,
|
|
Dict,
|
|
Iterable,
|
|
List,
|
|
Optional,
|
|
Tuple,
|
|
Type,
|
|
Union,
|
|
)
|
|
|
|
import numpy as np
|
|
from langchain_core.documents import Document
|
|
from langchain_core.embeddings import Embeddings
|
|
from langchain_core.vectorstores import VectorStore
|
|
|
|
from langchain_community.vectorstores.utils import maximal_marginal_relevance
|
|
|
|
if TYPE_CHECKING:
|
|
import supabase
|
|
|
|
|
|
class SupabaseVectorStore(VectorStore):
|
|
"""`Supabase Postgres` vector store.
|
|
|
|
It assumes you have the `pgvector`
|
|
extension installed and a `match_documents` (or similar) function. For more details:
|
|
https://integrations.langchain.com/vectorstores?integration_name=SupabaseVectorStore
|
|
|
|
You can implement your own `match_documents` function in order to limit the search
|
|
space to a subset of documents based on your own authorization or business logic.
|
|
|
|
Note that the Supabase Python client does not yet support async operations.
|
|
|
|
If you'd like to use `max_marginal_relevance_search`, please review the instructions
|
|
below on modifying the `match_documents` function to return matched embeddings.
|
|
|
|
|
|
Examples:
|
|
|
|
.. code-block:: python
|
|
|
|
from langchain_community.embeddings.openai import OpenAIEmbeddings
|
|
from langchain_core.documents import Document
|
|
from langchain_community.vectorstores import SupabaseVectorStore
|
|
from supabase.client import create_client
|
|
|
|
docs = [
|
|
Document(page_content="foo", metadata={"id": 1}),
|
|
]
|
|
embeddings = OpenAIEmbeddings()
|
|
supabase_client = create_client("my_supabase_url", "my_supabase_key")
|
|
vector_store = SupabaseVectorStore.from_documents(
|
|
docs,
|
|
embeddings,
|
|
client=supabase_client,
|
|
table_name="documents",
|
|
query_name="match_documents",
|
|
chunk_size=500,
|
|
)
|
|
|
|
To load from an existing table:
|
|
|
|
.. code-block:: python
|
|
|
|
from langchain_community.embeddings.openai import OpenAIEmbeddings
|
|
from langchain_community.vectorstores import SupabaseVectorStore
|
|
from supabase.client import create_client
|
|
|
|
|
|
embeddings = OpenAIEmbeddings()
|
|
supabase_client = create_client("my_supabase_url", "my_supabase_key")
|
|
vector_store = SupabaseVectorStore(
|
|
client=supabase_client,
|
|
embedding=embeddings,
|
|
table_name="documents",
|
|
query_name="match_documents",
|
|
)
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
client: supabase.client.Client,
|
|
embedding: Embeddings,
|
|
table_name: str,
|
|
chunk_size: int = 500,
|
|
query_name: Union[str, None] = None,
|
|
) -> None:
|
|
"""Initialize with supabase client."""
|
|
try:
|
|
import supabase # noqa: F401
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import supabase python package. "
|
|
"Please install it with `pip install supabase`."
|
|
)
|
|
|
|
self._client = client
|
|
self._embedding: Embeddings = embedding
|
|
self.table_name = table_name or "documents"
|
|
self.query_name = query_name or "match_documents"
|
|
self.chunk_size = chunk_size or 500
|
|
# According to the SupabaseVectorStore JS implementation, the best chunk size
|
|
# is 500. Though for large datasets it can be too large so it is configurable.
|
|
|
|
@property
|
|
def embeddings(self) -> Embeddings:
|
|
return self._embedding
|
|
|
|
def add_texts(
|
|
self,
|
|
texts: Iterable[str],
|
|
metadatas: Optional[List[Dict[Any, Any]]] = None,
|
|
ids: Optional[List[str]] = None,
|
|
**kwargs: Any,
|
|
) -> List[str]:
|
|
ids = ids or [str(uuid.uuid4()) for _ in texts]
|
|
docs = self._texts_to_documents(texts, metadatas)
|
|
|
|
vectors = self._embedding.embed_documents(list(texts))
|
|
return self.add_vectors(vectors, docs, ids)
|
|
|
|
@classmethod
|
|
def from_texts(
|
|
cls: Type["SupabaseVectorStore"],
|
|
texts: List[str],
|
|
embedding: Embeddings,
|
|
metadatas: Optional[List[dict]] = None,
|
|
client: Optional[supabase.client.Client] = None,
|
|
table_name: Optional[str] = "documents",
|
|
query_name: Union[str, None] = "match_documents",
|
|
chunk_size: int = 500,
|
|
ids: Optional[List[str]] = None,
|
|
**kwargs: Any,
|
|
) -> "SupabaseVectorStore":
|
|
"""Return VectorStore initialized from texts and embeddings."""
|
|
|
|
if not client:
|
|
raise ValueError("Supabase client is required.")
|
|
|
|
if not table_name:
|
|
raise ValueError("Supabase document table_name is required.")
|
|
|
|
embeddings = embedding.embed_documents(texts)
|
|
ids = [str(uuid.uuid4()) for _ in texts]
|
|
docs = cls._texts_to_documents(texts, metadatas)
|
|
cls._add_vectors(client, table_name, embeddings, docs, ids, chunk_size)
|
|
|
|
return cls(
|
|
client=client,
|
|
embedding=embedding,
|
|
table_name=table_name,
|
|
query_name=query_name,
|
|
chunk_size=chunk_size,
|
|
)
|
|
|
|
def add_vectors(
|
|
self,
|
|
vectors: List[List[float]],
|
|
documents: List[Document],
|
|
ids: List[str],
|
|
) -> List[str]:
|
|
return self._add_vectors(
|
|
self._client, self.table_name, vectors, documents, ids, self.chunk_size
|
|
)
|
|
|
|
def similarity_search(
|
|
self,
|
|
query: str,
|
|
k: int = 4,
|
|
filter: Optional[Dict[str, Any]] = None,
|
|
**kwargs: Any,
|
|
) -> List[Document]:
|
|
vector = self._embedding.embed_query(query)
|
|
return self.similarity_search_by_vector(vector, k=k, filter=filter, **kwargs)
|
|
|
|
def similarity_search_by_vector(
|
|
self,
|
|
embedding: List[float],
|
|
k: int = 4,
|
|
filter: Optional[Dict[str, Any]] = None,
|
|
**kwargs: Any,
|
|
) -> List[Document]:
|
|
result = self.similarity_search_by_vector_with_relevance_scores(
|
|
embedding, k=k, filter=filter, **kwargs
|
|
)
|
|
|
|
documents = [doc for doc, _ in result]
|
|
|
|
return documents
|
|
|
|
def similarity_search_with_relevance_scores(
|
|
self,
|
|
query: str,
|
|
k: int = 4,
|
|
filter: Optional[Dict[str, Any]] = None,
|
|
**kwargs: Any,
|
|
) -> List[Tuple[Document, float]]:
|
|
vector = self._embedding.embed_query(query)
|
|
return self.similarity_search_by_vector_with_relevance_scores(
|
|
vector, k=k, filter=filter, **kwargs
|
|
)
|
|
|
|
def match_args(
|
|
self, query: List[float], filter: Optional[Dict[str, Any]]
|
|
) -> Dict[str, Any]:
|
|
ret: Dict[str, Any] = dict(query_embedding=query)
|
|
if filter:
|
|
ret["filter"] = filter
|
|
return ret
|
|
|
|
def similarity_search_by_vector_with_relevance_scores(
|
|
self,
|
|
query: List[float],
|
|
k: int,
|
|
filter: Optional[Dict[str, Any]] = None,
|
|
postgrest_filter: Optional[str] = None,
|
|
score_threshold: Optional[float] = None,
|
|
) -> List[Tuple[Document, float]]:
|
|
match_documents_params = self.match_args(query, filter)
|
|
query_builder = self._client.rpc(self.query_name, match_documents_params)
|
|
|
|
if postgrest_filter:
|
|
query_builder.params = query_builder.params.set(
|
|
"and", f"({postgrest_filter})"
|
|
)
|
|
|
|
query_builder.params = query_builder.params.set("limit", k)
|
|
|
|
res = query_builder.execute()
|
|
|
|
match_result = [
|
|
(
|
|
Document(
|
|
metadata=search.get("metadata", {}), # type: ignore
|
|
page_content=search.get("content", ""),
|
|
),
|
|
search.get("similarity", 0.0),
|
|
)
|
|
for search in res.data
|
|
if search.get("content")
|
|
]
|
|
|
|
if score_threshold is not None:
|
|
match_result = [
|
|
(doc, similarity)
|
|
for doc, similarity in match_result
|
|
if similarity >= score_threshold
|
|
]
|
|
if len(match_result) == 0:
|
|
warnings.warn(
|
|
"No relevant docs were retrieved using the relevance score"
|
|
f" threshold {score_threshold}"
|
|
)
|
|
|
|
return match_result
|
|
|
|
def similarity_search_by_vector_returning_embeddings(
|
|
self,
|
|
query: List[float],
|
|
k: int,
|
|
filter: Optional[Dict[str, Any]] = None,
|
|
postgrest_filter: Optional[str] = None,
|
|
) -> List[Tuple[Document, float, np.ndarray[np.float32, Any]]]:
|
|
match_documents_params = self.match_args(query, filter)
|
|
query_builder = self._client.rpc(self.query_name, match_documents_params)
|
|
|
|
if postgrest_filter:
|
|
query_builder.params = query_builder.params.set(
|
|
"and", f"({postgrest_filter})"
|
|
)
|
|
|
|
query_builder.params = query_builder.params.set("limit", k)
|
|
|
|
res = query_builder.execute()
|
|
|
|
match_result = [
|
|
(
|
|
Document(
|
|
metadata=search.get("metadata", {}), # type: ignore
|
|
page_content=search.get("content", ""),
|
|
),
|
|
search.get("similarity", 0.0),
|
|
# Supabase returns a vector type as its string represation (!).
|
|
# This is a hack to convert the string to numpy array.
|
|
np.fromstring(
|
|
search.get("embedding", "").strip("[]"), np.float32, sep=","
|
|
),
|
|
)
|
|
for search in res.data
|
|
if search.get("content")
|
|
]
|
|
|
|
return match_result
|
|
|
|
@staticmethod
|
|
def _texts_to_documents(
|
|
texts: Iterable[str],
|
|
metadatas: Optional[Iterable[Dict[Any, Any]]] = None,
|
|
) -> List[Document]:
|
|
"""Return list of Documents from list of texts and metadatas."""
|
|
if metadatas is None:
|
|
metadatas = repeat({})
|
|
|
|
docs = [
|
|
Document(page_content=text, metadata=metadata)
|
|
for text, metadata in zip(texts, metadatas)
|
|
]
|
|
|
|
return docs
|
|
|
|
@staticmethod
|
|
def _add_vectors(
|
|
client: supabase.client.Client,
|
|
table_name: str,
|
|
vectors: List[List[float]],
|
|
documents: List[Document],
|
|
ids: List[str],
|
|
chunk_size: int,
|
|
) -> List[str]:
|
|
"""Add vectors to Supabase table."""
|
|
|
|
rows: List[Dict[str, Any]] = [
|
|
{
|
|
"id": ids[idx],
|
|
"content": documents[idx].page_content,
|
|
"embedding": embedding,
|
|
"metadata": documents[idx].metadata, # type: ignore
|
|
}
|
|
for idx, embedding in enumerate(vectors)
|
|
]
|
|
|
|
id_list: List[str] = []
|
|
for i in range(0, len(rows), chunk_size):
|
|
chunk = rows[i : i + chunk_size]
|
|
|
|
result = client.from_(table_name).upsert(chunk).execute() # type: ignore
|
|
|
|
if len(result.data) == 0:
|
|
raise Exception("Error inserting: No rows added")
|
|
|
|
# VectorStore.add_vectors returns ids as strings
|
|
ids = [str(i.get("id")) for i in result.data if i.get("id")]
|
|
|
|
id_list.extend(ids)
|
|
|
|
return id_list
|
|
|
|
def max_marginal_relevance_search_by_vector(
|
|
self,
|
|
embedding: List[float],
|
|
k: int = 4,
|
|
fetch_k: int = 20,
|
|
lambda_mult: float = 0.5,
|
|
**kwargs: Any,
|
|
) -> List[Document]:
|
|
"""Return docs selected using the maximal marginal relevance.
|
|
|
|
Maximal marginal relevance optimizes for similarity to query AND diversity
|
|
among selected documents.
|
|
|
|
Args:
|
|
embedding: Embedding to look up documents similar to.
|
|
k: Number of Documents to return. Defaults to 4.
|
|
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
|
|
lambda_mult: Number between 0 and 1 that determines the degree
|
|
of diversity among the results with 0 corresponding
|
|
to maximum diversity and 1 to minimum diversity.
|
|
Defaults to 0.5.
|
|
Returns:
|
|
List of Documents selected by maximal marginal relevance.
|
|
"""
|
|
result = self.similarity_search_by_vector_returning_embeddings(
|
|
embedding, fetch_k
|
|
)
|
|
|
|
matched_documents = [doc_tuple[0] for doc_tuple in result]
|
|
matched_embeddings = [doc_tuple[2] for doc_tuple in result]
|
|
|
|
mmr_selected = maximal_marginal_relevance(
|
|
np.array([embedding], dtype=np.float32),
|
|
matched_embeddings,
|
|
k=k,
|
|
lambda_mult=lambda_mult,
|
|
)
|
|
|
|
filtered_documents = [matched_documents[i] for i in mmr_selected]
|
|
|
|
return filtered_documents
|
|
|
|
def max_marginal_relevance_search(
|
|
self,
|
|
query: str,
|
|
k: int = 4,
|
|
fetch_k: int = 20,
|
|
lambda_mult: float = 0.5,
|
|
**kwargs: Any,
|
|
) -> List[Document]:
|
|
"""Return docs selected using the maximal marginal relevance.
|
|
|
|
Maximal marginal relevance optimizes for similarity to query AND diversity
|
|
among selected documents.
|
|
|
|
Args:
|
|
query: Text to look up documents similar to.
|
|
k: Number of Documents to return. Defaults to 4.
|
|
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
|
|
lambda_mult: Number between 0 and 1 that determines the degree
|
|
of diversity among the results with 0 corresponding
|
|
to maximum diversity and 1 to minimum diversity.
|
|
Defaults to 0.5.
|
|
Returns:
|
|
List of Documents selected by maximal marginal relevance.
|
|
|
|
`max_marginal_relevance_search` requires that `query_name` returns matched
|
|
embeddings alongside the match documents. The following function
|
|
demonstrates how to do this:
|
|
|
|
```sql
|
|
CREATE FUNCTION match_documents_embeddings(query_embedding vector(1536),
|
|
match_count int)
|
|
RETURNS TABLE(
|
|
id uuid,
|
|
content text,
|
|
metadata jsonb,
|
|
embedding vector(1536),
|
|
similarity float)
|
|
LANGUAGE plpgsql
|
|
AS $$
|
|
# variable_conflict use_column
|
|
BEGIN
|
|
RETURN query
|
|
SELECT
|
|
id,
|
|
content,
|
|
metadata,
|
|
embedding,
|
|
1 -(docstore.embedding <=> query_embedding) AS similarity
|
|
FROM
|
|
docstore
|
|
ORDER BY
|
|
docstore.embedding <=> query_embedding
|
|
LIMIT match_count;
|
|
END;
|
|
$$;
|
|
```
|
|
"""
|
|
embedding = self._embedding.embed_query(query)
|
|
docs = self.max_marginal_relevance_search_by_vector(
|
|
embedding, k, fetch_k, lambda_mult=lambda_mult
|
|
)
|
|
return docs
|
|
|
|
def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> None:
|
|
"""Delete by vector IDs.
|
|
|
|
Args:
|
|
ids: List of ids to delete.
|
|
"""
|
|
|
|
if ids is None:
|
|
raise ValueError("No ids provided to delete.")
|
|
|
|
rows: List[Dict[str, Any]] = [
|
|
{
|
|
"id": id,
|
|
}
|
|
for id in ids
|
|
]
|
|
|
|
# TODO: Check if this can be done in bulk
|
|
for row in rows:
|
|
self._client.from_(self.table_name).delete().eq("id", row["id"]).execute()
|