mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
ed58eeb9c5
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
277 lines
11 KiB
Python
277 lines
11 KiB
Python
"""Wrapper around a Power BI endpoint."""
|
|
from __future__ import annotations
|
|
|
|
import asyncio
|
|
import logging
|
|
import os
|
|
from typing import TYPE_CHECKING, Any, Dict, Iterable, List, Optional, Union
|
|
|
|
import aiohttp
|
|
import requests
|
|
from aiohttp import ServerTimeoutError
|
|
from langchain_core.pydantic_v1 import BaseModel, Field, root_validator, validator
|
|
from requests.exceptions import Timeout
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
BASE_URL = os.getenv("POWERBI_BASE_URL", "https://api.powerbi.com/v1.0/myorg")
|
|
|
|
if TYPE_CHECKING:
|
|
from azure.core.credentials import TokenCredential
|
|
|
|
|
|
class PowerBIDataset(BaseModel):
|
|
"""Create PowerBI engine from dataset ID and credential or token.
|
|
|
|
Use either the credential or a supplied token to authenticate.
|
|
If both are supplied the credential is used to generate a token.
|
|
The impersonated_user_name is the UPN of a user to be impersonated.
|
|
If the model is not RLS enabled, this will be ignored.
|
|
"""
|
|
|
|
dataset_id: str
|
|
table_names: List[str]
|
|
group_id: Optional[str] = None
|
|
credential: Optional[TokenCredential] = None
|
|
token: Optional[str] = None
|
|
impersonated_user_name: Optional[str] = None
|
|
sample_rows_in_table_info: int = Field(default=1, gt=0, le=10)
|
|
schemas: Dict[str, str] = Field(default_factory=dict)
|
|
aiosession: Optional[aiohttp.ClientSession] = None
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic object."""
|
|
|
|
arbitrary_types_allowed = True
|
|
|
|
@validator("table_names", allow_reuse=True)
|
|
def fix_table_names(cls, table_names: List[str]) -> List[str]:
|
|
"""Fix the table names."""
|
|
return [fix_table_name(table) for table in table_names]
|
|
|
|
@root_validator(pre=True, allow_reuse=True)
|
|
def token_or_credential_present(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
|
"""Validate that at least one of token and credentials is present."""
|
|
if "token" in values or "credential" in values:
|
|
return values
|
|
raise ValueError("Please provide either a credential or a token.")
|
|
|
|
@property
|
|
def request_url(self) -> str:
|
|
"""Get the request url."""
|
|
if self.group_id:
|
|
return f"{BASE_URL}/groups/{self.group_id}/datasets/{self.dataset_id}/executeQueries" # noqa: E501 # pylint: disable=C0301
|
|
return f"{BASE_URL}/datasets/{self.dataset_id}/executeQueries" # noqa: E501 # pylint: disable=C0301
|
|
|
|
@property
|
|
def headers(self) -> Dict[str, str]:
|
|
"""Get the token."""
|
|
if self.token:
|
|
return {
|
|
"Content-Type": "application/json",
|
|
"Authorization": "Bearer " + self.token,
|
|
}
|
|
from azure.core.exceptions import (
|
|
ClientAuthenticationError, # pylint: disable=import-outside-toplevel
|
|
)
|
|
|
|
if self.credential:
|
|
try:
|
|
token = self.credential.get_token(
|
|
"https://analysis.windows.net/powerbi/api/.default"
|
|
).token
|
|
return {
|
|
"Content-Type": "application/json",
|
|
"Authorization": "Bearer " + token,
|
|
}
|
|
except Exception as exc: # pylint: disable=broad-exception-caught
|
|
raise ClientAuthenticationError(
|
|
"Could not get a token from the supplied credentials."
|
|
) from exc
|
|
raise ClientAuthenticationError("No credential or token supplied.")
|
|
|
|
def get_table_names(self) -> Iterable[str]:
|
|
"""Get names of tables available."""
|
|
return self.table_names
|
|
|
|
def get_schemas(self) -> str:
|
|
"""Get the available schema's."""
|
|
if self.schemas:
|
|
return ", ".join([f"{key}: {value}" for key, value in self.schemas.items()])
|
|
return "No known schema's yet. Use the schema_powerbi tool first."
|
|
|
|
@property
|
|
def table_info(self) -> str:
|
|
"""Information about all tables in the database."""
|
|
return self.get_table_info()
|
|
|
|
def _get_tables_to_query(
|
|
self, table_names: Optional[Union[List[str], str]] = None
|
|
) -> Optional[List[str]]:
|
|
"""Get the tables names that need to be queried, after checking they exist."""
|
|
if table_names is not None:
|
|
if (
|
|
isinstance(table_names, list)
|
|
and len(table_names) > 0
|
|
and table_names[0] != ""
|
|
):
|
|
fixed_tables = [fix_table_name(table) for table in table_names]
|
|
non_existing_tables = [
|
|
table for table in fixed_tables if table not in self.table_names
|
|
]
|
|
if non_existing_tables:
|
|
logger.warning(
|
|
"Table(s) %s not found in dataset.",
|
|
", ".join(non_existing_tables),
|
|
)
|
|
tables = [
|
|
table for table in fixed_tables if table not in non_existing_tables
|
|
]
|
|
return tables if tables else None
|
|
if isinstance(table_names, str) and table_names != "":
|
|
if table_names not in self.table_names:
|
|
logger.warning("Table %s not found in dataset.", table_names)
|
|
return None
|
|
return [fix_table_name(table_names)]
|
|
return self.table_names
|
|
|
|
def _get_tables_todo(self, tables_todo: List[str]) -> List[str]:
|
|
"""Get the tables that still need to be queried."""
|
|
return [table for table in tables_todo if table not in self.schemas]
|
|
|
|
def _get_schema_for_tables(self, table_names: List[str]) -> str:
|
|
"""Create a string of the table schemas for the supplied tables."""
|
|
schemas = [
|
|
schema for table, schema in self.schemas.items() if table in table_names
|
|
]
|
|
return ", ".join(schemas)
|
|
|
|
def get_table_info(
|
|
self, table_names: Optional[Union[List[str], str]] = None
|
|
) -> str:
|
|
"""Get information about specified tables."""
|
|
tables_requested = self._get_tables_to_query(table_names)
|
|
if tables_requested is None:
|
|
return "No (valid) tables requested."
|
|
tables_todo = self._get_tables_todo(tables_requested)
|
|
for table in tables_todo:
|
|
self._get_schema(table)
|
|
return self._get_schema_for_tables(tables_requested)
|
|
|
|
async def aget_table_info(
|
|
self, table_names: Optional[Union[List[str], str]] = None
|
|
) -> str:
|
|
"""Get information about specified tables."""
|
|
tables_requested = self._get_tables_to_query(table_names)
|
|
if tables_requested is None:
|
|
return "No (valid) tables requested."
|
|
tables_todo = self._get_tables_todo(tables_requested)
|
|
await asyncio.gather(*[self._aget_schema(table) for table in tables_todo])
|
|
return self._get_schema_for_tables(tables_requested)
|
|
|
|
def _get_schema(self, table: str) -> None:
|
|
"""Get the schema for a table."""
|
|
try:
|
|
result = self.run(
|
|
f"EVALUATE TOPN({self.sample_rows_in_table_info}, {table})"
|
|
)
|
|
self.schemas[table] = json_to_md(result["results"][0]["tables"][0]["rows"])
|
|
except Timeout:
|
|
logger.warning("Timeout while getting table info for %s", table)
|
|
self.schemas[table] = "unknown"
|
|
except Exception as exc: # pylint: disable=broad-exception-caught
|
|
logger.warning("Error while getting table info for %s: %s", table, exc)
|
|
self.schemas[table] = "unknown"
|
|
|
|
async def _aget_schema(self, table: str) -> None:
|
|
"""Get the schema for a table."""
|
|
try:
|
|
result = await self.arun(
|
|
f"EVALUATE TOPN({self.sample_rows_in_table_info}, {table})"
|
|
)
|
|
self.schemas[table] = json_to_md(result["results"][0]["tables"][0]["rows"])
|
|
except ServerTimeoutError:
|
|
logger.warning("Timeout while getting table info for %s", table)
|
|
self.schemas[table] = "unknown"
|
|
except Exception as exc: # pylint: disable=broad-exception-caught
|
|
logger.warning("Error while getting table info for %s: %s", table, exc)
|
|
self.schemas[table] = "unknown"
|
|
|
|
def _create_json_content(self, command: str) -> dict[str, Any]:
|
|
"""Create the json content for the request."""
|
|
return {
|
|
"queries": [{"query": rf"{command}"}],
|
|
"impersonatedUserName": self.impersonated_user_name,
|
|
"serializerSettings": {"includeNulls": True},
|
|
}
|
|
|
|
def run(self, command: str) -> Any:
|
|
"""Execute a DAX command and return a json representing the results."""
|
|
logger.debug("Running command: %s", command)
|
|
response = requests.post(
|
|
self.request_url,
|
|
json=self._create_json_content(command),
|
|
headers=self.headers,
|
|
timeout=10,
|
|
)
|
|
if response.status_code == 403:
|
|
return (
|
|
"TokenError: Could not login to PowerBI, please check your credentials."
|
|
)
|
|
return response.json()
|
|
|
|
async def arun(self, command: str) -> Any:
|
|
"""Execute a DAX command and return the result asynchronously."""
|
|
logger.debug("Running command: %s", command)
|
|
if self.aiosession:
|
|
async with self.aiosession.post(
|
|
self.request_url,
|
|
headers=self.headers,
|
|
json=self._create_json_content(command),
|
|
timeout=10,
|
|
) as response:
|
|
if response.status == 403:
|
|
return "TokenError: Could not login to PowerBI, please check your credentials." # noqa: E501
|
|
response_json = await response.json(content_type=response.content_type)
|
|
return response_json
|
|
async with aiohttp.ClientSession() as session:
|
|
async with session.post(
|
|
self.request_url,
|
|
headers=self.headers,
|
|
json=self._create_json_content(command),
|
|
timeout=10,
|
|
) as response:
|
|
if response.status == 403:
|
|
return "TokenError: Could not login to PowerBI, please check your credentials." # noqa: E501
|
|
response_json = await response.json(content_type=response.content_type)
|
|
return response_json
|
|
|
|
|
|
def json_to_md(
|
|
json_contents: List[Dict[str, Union[str, int, float]]],
|
|
table_name: Optional[str] = None,
|
|
) -> str:
|
|
"""Converts a JSON object to a markdown table."""
|
|
if len(json_contents) == 0:
|
|
return ""
|
|
output_md = ""
|
|
headers = json_contents[0].keys()
|
|
for header in headers:
|
|
header.replace("[", ".").replace("]", "")
|
|
if table_name:
|
|
header.replace(f"{table_name}.", "")
|
|
output_md += f"| {header} "
|
|
output_md += "|\n"
|
|
for row in json_contents:
|
|
for value in row.values():
|
|
output_md += f"| {value} "
|
|
output_md += "|\n"
|
|
return output_md
|
|
|
|
|
|
def fix_table_name(table: str) -> str:
|
|
"""Add single quotes around table names that contain spaces."""
|
|
if " " in table and not table.startswith("'") and not table.endswith("'"):
|
|
return f"'{table}'"
|
|
return table
|