mirror of
https://github.com/hwchase17/langchain
synced 2024-11-20 03:25:56 +00:00
4eda647fdd
Previously, if this did not find a mypy cache then it wouldnt run this makes it always run adding mypy ignore comments with existing uncaught issues to unblock other prs --------- Co-authored-by: Erick Friis <erick@langchain.dev> Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
157 lines
5.4 KiB
Python
157 lines
5.4 KiB
Python
from typing import Any, Dict, List, Mapping, Optional
|
|
|
|
import requests
|
|
from langchain_core.embeddings import Embeddings
|
|
from langchain_core.pydantic_v1 import BaseModel, Extra, SecretStr, root_validator
|
|
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
|
|
from requests.adapters import HTTPAdapter, Retry
|
|
from typing_extensions import NotRequired, TypedDict
|
|
|
|
# Currently supported maximum batch size for embedding requests
|
|
MAX_BATCH_SIZE = 256
|
|
EMBAAS_API_URL = "https://api.embaas.io/v1/embeddings/"
|
|
|
|
|
|
class EmbaasEmbeddingsPayload(TypedDict):
|
|
"""Payload for the Embaas embeddings API."""
|
|
|
|
model: str
|
|
texts: List[str]
|
|
instruction: NotRequired[str]
|
|
|
|
|
|
class EmbaasEmbeddings(BaseModel, Embeddings):
|
|
"""Embaas's embedding service.
|
|
|
|
To use, you should have the
|
|
environment variable ``EMBAAS_API_KEY`` set with your API key, or pass
|
|
it as a named parameter to the constructor.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
# initialize with default model and instruction
|
|
from langchain_community.embeddings import EmbaasEmbeddings
|
|
emb = EmbaasEmbeddings()
|
|
|
|
# initialize with custom model and instruction
|
|
from langchain_community.embeddings import EmbaasEmbeddings
|
|
emb_model = "instructor-large"
|
|
emb_inst = "Represent the Wikipedia document for retrieval"
|
|
emb = EmbaasEmbeddings(
|
|
model=emb_model,
|
|
instruction=emb_inst
|
|
)
|
|
"""
|
|
|
|
model: str = "e5-large-v2"
|
|
"""The model used for embeddings."""
|
|
instruction: Optional[str] = None
|
|
"""Instruction used for domain-specific embeddings."""
|
|
api_url: str = EMBAAS_API_URL
|
|
"""The URL for the embaas embeddings API."""
|
|
embaas_api_key: Optional[SecretStr] = None
|
|
"""max number of retries for requests"""
|
|
max_retries: Optional[int] = 3
|
|
"""request timeout in seconds"""
|
|
timeout: Optional[int] = 30
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic object."""
|
|
|
|
extra = Extra.forbid
|
|
|
|
@root_validator()
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate that api key and python package exists in environment."""
|
|
embaas_api_key = convert_to_secret_str(
|
|
get_from_dict_or_env(values, "embaas_api_key", "EMBAAS_API_KEY")
|
|
)
|
|
values["embaas_api_key"] = embaas_api_key
|
|
return values
|
|
|
|
@property
|
|
def _identifying_params(self) -> Mapping[str, Any]:
|
|
"""Get the identifying params."""
|
|
return {"model": self.model, "instruction": self.instruction}
|
|
|
|
def _generate_payload(self, texts: List[str]) -> EmbaasEmbeddingsPayload:
|
|
"""Generates payload for the API request."""
|
|
payload = EmbaasEmbeddingsPayload(texts=texts, model=self.model)
|
|
if self.instruction:
|
|
payload["instruction"] = self.instruction
|
|
return payload
|
|
|
|
def _handle_request(self, payload: EmbaasEmbeddingsPayload) -> List[List[float]]:
|
|
"""Sends a request to the Embaas API and handles the response."""
|
|
headers = {
|
|
"Authorization": f"Bearer {self.embaas_api_key.get_secret_value()}", # type: ignore[union-attr]
|
|
"Content-Type": "application/json",
|
|
}
|
|
|
|
session = requests.Session()
|
|
retries = Retry(
|
|
total=self.max_retries,
|
|
backoff_factor=0.5,
|
|
allowed_methods=["POST"],
|
|
raise_on_status=True,
|
|
)
|
|
|
|
session.mount("http://", HTTPAdapter(max_retries=retries))
|
|
session.mount("https://", HTTPAdapter(max_retries=retries))
|
|
response = session.post(
|
|
self.api_url,
|
|
headers=headers,
|
|
json=payload,
|
|
timeout=self.timeout,
|
|
)
|
|
|
|
parsed_response = response.json()
|
|
embeddings = [item["embedding"] for item in parsed_response["data"]]
|
|
|
|
return embeddings
|
|
|
|
def _generate_embeddings(self, texts: List[str]) -> List[List[float]]:
|
|
"""Generate embeddings using the Embaas API."""
|
|
payload = self._generate_payload(texts)
|
|
try:
|
|
return self._handle_request(payload)
|
|
except requests.exceptions.RequestException as e:
|
|
if e.response is None or not e.response.text:
|
|
raise ValueError(f"Error raised by embaas embeddings API: {e}")
|
|
|
|
parsed_response = e.response.json()
|
|
if "message" in parsed_response:
|
|
raise ValueError(
|
|
"Validation Error raised by embaas embeddings API:"
|
|
f"{parsed_response['message']}"
|
|
)
|
|
raise
|
|
|
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
|
"""Get embeddings for a list of texts.
|
|
|
|
Args:
|
|
texts: The list of texts to get embeddings for.
|
|
|
|
Returns:
|
|
List of embeddings, one for each text.
|
|
"""
|
|
batches = [
|
|
texts[i : i + MAX_BATCH_SIZE] for i in range(0, len(texts), MAX_BATCH_SIZE)
|
|
]
|
|
embeddings = [self._generate_embeddings(batch) for batch in batches]
|
|
# flatten the list of lists into a single list
|
|
return [embedding for batch in embeddings for embedding in batch]
|
|
|
|
def embed_query(self, text: str) -> List[float]:
|
|
"""Get embeddings for a single text.
|
|
|
|
Args:
|
|
text: The text to get embeddings for.
|
|
|
|
Returns:
|
|
List of embeddings.
|
|
"""
|
|
return self.embed_documents([text])[0]
|