mirror of
https://github.com/hwchase17/langchain
synced 2024-11-08 07:10:35 +00:00
3f0357f94a
# Add summarization task type for HuggingFace APIs Add summarization task type for HuggingFace APIs. This task type is described by [HuggingFace inference API](https://huggingface.co/docs/api-inference/detailed_parameters#summarization-task) My project utilizes LangChain to connect multiple LLMs, including various HuggingFace models that support the summarization task. Integrating this task type is highly convenient and beneficial. Fixes #4720
46 lines
1.5 KiB
Python
46 lines
1.5 KiB
Python
"""Test HuggingFace API wrapper."""
|
|
|
|
from pathlib import Path
|
|
|
|
import pytest
|
|
|
|
from langchain.llms.huggingface_hub import HuggingFaceHub
|
|
from langchain.llms.loading import load_llm
|
|
from tests.integration_tests.llms.utils import assert_llm_equality
|
|
|
|
|
|
def test_huggingface_text_generation() -> None:
|
|
"""Test valid call to HuggingFace text generation model."""
|
|
llm = HuggingFaceHub(repo_id="gpt2", model_kwargs={"max_new_tokens": 10})
|
|
output = llm("Say foo:")
|
|
assert isinstance(output, str)
|
|
|
|
|
|
def test_huggingface_text2text_generation() -> None:
|
|
"""Test valid call to HuggingFace text2text model."""
|
|
llm = HuggingFaceHub(repo_id="google/flan-t5-xl")
|
|
output = llm("The capital of New York is")
|
|
assert output == "Albany"
|
|
|
|
|
|
def test_huggingface_summarization() -> None:
|
|
"""Test valid call to HuggingFace summarization model."""
|
|
llm = HuggingFaceHub(repo_id="facebook/bart-large-cnn")
|
|
output = llm("Say foo:")
|
|
assert isinstance(output, str)
|
|
|
|
|
|
def test_huggingface_call_error() -> None:
|
|
"""Test valid call to HuggingFace that errors."""
|
|
llm = HuggingFaceHub(model_kwargs={"max_new_tokens": -1})
|
|
with pytest.raises(ValueError):
|
|
llm("Say foo:")
|
|
|
|
|
|
def test_saving_loading_llm(tmp_path: Path) -> None:
|
|
"""Test saving/loading an HuggingFaceHub LLM."""
|
|
llm = HuggingFaceHub(repo_id="gpt2", model_kwargs={"max_new_tokens": 10})
|
|
llm.save(file_path=tmp_path / "hf.yaml")
|
|
loaded_llm = load_llm(tmp_path / "hf.yaml")
|
|
assert_llm_equality(llm, loaded_llm)
|