mirror of
https://github.com/hwchase17/langchain
synced 2024-11-08 07:10:35 +00:00
63 lines
1.6 KiB
Python
63 lines
1.6 KiB
Python
import json
|
|
from pathlib import Path
|
|
|
|
from langchain_community.chat_models import ChatOpenAI
|
|
from langchain_community.embeddings import OpenAIEmbeddings
|
|
from langchain_community.vectorstores import Chroma
|
|
from langchain_core.documents import Document
|
|
from langchain_core.output_parsers import StrOutputParser
|
|
from langchain_core.prompts import ChatPromptTemplate
|
|
from langchain_core.pydantic_v1 import BaseModel
|
|
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
|
|
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
|
|
|
# Load output from gpt crawler
|
|
path_to_gptcrawler = Path(__file__).parent.parent / "output.json"
|
|
data = json.loads(Path(path_to_gptcrawler).read_text())
|
|
docs = [
|
|
Document(
|
|
page_content=dict_["html"],
|
|
metadata={"title": dict_["title"], "url": dict_["url"]},
|
|
)
|
|
for dict_ in data
|
|
]
|
|
|
|
# Split
|
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
|
all_splits = text_splitter.split_documents(docs)
|
|
|
|
# Add to vectorDB
|
|
vectorstore = Chroma.from_documents(
|
|
documents=all_splits,
|
|
collection_name="rag-gpt-builder",
|
|
embedding=OpenAIEmbeddings(),
|
|
)
|
|
retriever = vectorstore.as_retriever()
|
|
|
|
# RAG prompt
|
|
template = """Answer the question based only on the following context:
|
|
{context}
|
|
|
|
Question: {question}
|
|
"""
|
|
prompt = ChatPromptTemplate.from_template(template)
|
|
|
|
# LLM
|
|
model = ChatOpenAI()
|
|
|
|
# RAG chain
|
|
chain = (
|
|
RunnableParallel({"context": retriever, "question": RunnablePassthrough()})
|
|
| prompt
|
|
| model
|
|
| StrOutputParser()
|
|
)
|
|
|
|
|
|
# Add typing for input
|
|
class Question(BaseModel):
|
|
__root__: str
|
|
|
|
|
|
chain = chain.with_types(input_type=Question)
|