mirror of
https://github.com/hwchase17/langchain
synced 2024-10-31 15:20:26 +00:00
5420a0e404
- Updated `langchain/docs/modules/models/llms/integrations/` notebooks: added links to the original sites, the install information, etc. - Added the `nlpcloud` notebook. - Removed "Example" from Titles of some notebooks, so all notebook titles are consistent.
144 lines
3.5 KiB
Plaintext
144 lines
3.5 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Modal\n",
|
|
"\n",
|
|
"The [Modal Python Library](https://modal.com/docs/guide) provides convenient, on-demand access to serverless cloud compute from Python scripts on your local computer. \n",
|
|
"The `Modal` itself does not provide any LLMs but only the infrastructure.\n",
|
|
"\n",
|
|
"This example goes over how to use LangChain to interact with `Modal`.\n",
|
|
"\n",
|
|
"[Here](https://modal.com/docs/guide/ex/potus_speech_qanda) is another example how to use LangChain to interact with `Modal`."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"!pip install modal-client"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"\u001b[?25lLaunching login page in your browser window\u001b[33m...\u001b[0m\n",
|
|
"\u001b[2KIf this is not showing up, please copy this URL into your web browser manually:\n",
|
|
"\u001b[2Km⠙\u001b[0m Waiting for authentication in the web browser...\n",
|
|
"\u001b]8;id=417802;https://modal.com/token-flow/tf-ptEuGecm7T1T5YQe42kwM1\u001b\\\u001b[4;94mhttps://modal.com/token-flow/tf-ptEuGecm7T1T5YQe42kwM1\u001b[0m\u001b]8;;\u001b\\\n",
|
|
"\n",
|
|
"\u001b[2K\u001b[32m⠙\u001b[0m Waiting for authentication in the web browser...\n",
|
|
"\u001b[1A\u001b[2K^C\n",
|
|
"\n",
|
|
"\u001b[31mAborted.\u001b[0m\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# register and get a new token\n",
|
|
"\n",
|
|
"!modal token new"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Follow [these instructions](https://modal.com/docs/guide/secrets) to deal with secrets."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.llms import Modal\n",
|
|
"from langchain import PromptTemplate, LLMChain"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"template = \"\"\"Question: {question}\n",
|
|
"\n",
|
|
"Answer: Let's think step by step.\"\"\"\n",
|
|
"\n",
|
|
"prompt = PromptTemplate(template=template, input_variables=[\"question\"])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"llm = Modal(endpoint_url=\"YOUR_ENDPOINT_URL\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"llm_chain = LLMChain(prompt=prompt, llm=llm)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"question = \"What NFL team won the Super Bowl in the year Justin Beiber was born?\"\n",
|
|
"\n",
|
|
"llm_chain.run(question)"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.10.6"
|
|
},
|
|
"vscode": {
|
|
"interpreter": {
|
|
"hash": "a0a0263b650d907a3bfe41c0f8d6a63a071b884df3cfdc1579f00cdc1aed6b03"
|
|
}
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 4
|
|
}
|