langchain/tests/unit_tests/client/test_runner_utils.py
Zander Chase 429f4dbe4d
Add Input Mapper in run_on_dataset (#6894)
If you create a dataset from runs and run the same chain or llm on it
later, it usually works great.

If you have an agent dataset and want to run a different agent on it, or
have more complex schema, it's hard for us to automatically map these
values every time. This PR lets you pass in an input_mapper function
that converts the example inputs to whatever format your model expects
2023-06-29 16:53:49 -07:00

266 lines
7.7 KiB
Python

"""Test the LangChain+ client."""
import uuid
from datetime import datetime
from typing import Any, Dict, List, Optional, Union
from unittest import mock
import pytest
from langchainplus_sdk.client import LangChainPlusClient
from langchainplus_sdk.schemas import Dataset, Example
from langchain.base_language import BaseLanguageModel
from langchain.chains.base import Chain
from langchain.chains.transform import TransformChain
from langchain.client.runner_utils import (
InputFormatError,
_get_messages,
_get_prompts,
arun_on_dataset,
run_llm,
run_llm_or_chain,
)
from langchain.schema import LLMResult
from tests.unit_tests.llms.fake_chat_model import FakeChatModel
from tests.unit_tests.llms.fake_llm import FakeLLM
_CREATED_AT = datetime(2015, 1, 1, 0, 0, 0)
_TENANT_ID = "7a3d2b56-cd5b-44e5-846f-7eb6e8144ce4"
_EXAMPLE_MESSAGE = {
"data": {"content": "Foo", "example": False, "additional_kwargs": {}},
"type": "human",
}
_VALID_MESSAGES = [
{"messages": [_EXAMPLE_MESSAGE], "other_key": "value"},
{"messages": [], "other_key": "value"},
{
"messages": [[_EXAMPLE_MESSAGE, _EXAMPLE_MESSAGE], [_EXAMPLE_MESSAGE]],
"other_key": "value",
},
{"any_key": [_EXAMPLE_MESSAGE]},
{"any_key": [[_EXAMPLE_MESSAGE, _EXAMPLE_MESSAGE], [_EXAMPLE_MESSAGE]]},
]
_VALID_PROMPTS = [
{"prompts": ["foo", "bar", "baz"], "other_key": "value"},
{"prompt": "foo", "other_key": ["bar", "baz"]},
{"some_key": "foo"},
{"some_key": ["foo", "bar"]},
]
@pytest.mark.parametrize(
"inputs",
_VALID_MESSAGES,
)
def test__get_messages_valid(inputs: Dict[str, Any]) -> None:
{"messages": []}
_get_messages(inputs)
@pytest.mark.parametrize(
"inputs",
_VALID_PROMPTS,
)
def test__get_prompts_valid(inputs: Dict[str, Any]) -> None:
_get_prompts(inputs)
@pytest.mark.parametrize(
"inputs",
[
{"prompts": "foo"},
{"prompt": ["foo"]},
{"some_key": 3},
{"some_key": "foo", "other_key": "bar"},
],
)
def test__get_prompts_invalid(inputs: Dict[str, Any]) -> None:
with pytest.raises(InputFormatError):
_get_prompts(inputs)
def test_run_llm_or_chain_with_input_mapper() -> None:
example = Example(
id=uuid.uuid4(),
created_at=_CREATED_AT,
inputs={"the wrong input": "1", "another key": "2"},
outputs={"output": "2"},
dataset_id=str(uuid.uuid4()),
)
def run_val(inputs: dict) -> dict:
assert "the right input" in inputs
return {"output": "2"}
mock_chain = TransformChain(
input_variables=["the right input"],
output_variables=["output"],
transform=run_val,
)
def input_mapper(inputs: dict) -> dict:
assert "the wrong input" in inputs
return {"the right input": inputs["the wrong input"]}
result = run_llm_or_chain(
example, lambda: mock_chain, n_repetitions=1, input_mapper=input_mapper
)
assert len(result) == 1
assert result[0] == {"output": "2", "the right input": "1"}
bad_result = run_llm_or_chain(
example,
lambda: mock_chain,
n_repetitions=1,
)
assert len(bad_result) == 1
assert "Error" in bad_result[0]
# Try with LLM
def llm_input_mapper(inputs: dict) -> List[str]:
assert "the wrong input" in inputs
return ["the right input"]
mock_llm = FakeLLM(queries={"the right input": "somenumber"})
result = run_llm_or_chain(
example, mock_llm, n_repetitions=1, input_mapper=llm_input_mapper
)
assert len(result) == 1
llm_result = result[0]
assert isinstance(llm_result, LLMResult)
assert llm_result.generations[0][0].text == "somenumber"
@pytest.mark.parametrize(
"inputs",
[
{"one_key": [_EXAMPLE_MESSAGE], "other_key": "value"},
{
"messages": [[_EXAMPLE_MESSAGE, _EXAMPLE_MESSAGE], _EXAMPLE_MESSAGE],
"other_key": "value",
},
{"prompts": "foo"},
{},
],
)
def test__get_messages_invalid(inputs: Dict[str, Any]) -> None:
with pytest.raises(InputFormatError):
_get_messages(inputs)
@pytest.mark.parametrize("inputs", _VALID_PROMPTS + _VALID_MESSAGES)
def test_run_llm_all_formats(inputs: Dict[str, Any]) -> None:
llm = FakeLLM()
run_llm(llm, inputs, mock.MagicMock())
@pytest.mark.parametrize("inputs", _VALID_MESSAGES + _VALID_PROMPTS)
def test_run_chat_model_all_formats(inputs: Dict[str, Any]) -> None:
llm = FakeChatModel()
run_llm(llm, inputs, mock.MagicMock())
@pytest.mark.asyncio
async def test_arun_on_dataset(monkeypatch: pytest.MonkeyPatch) -> None:
dataset = Dataset(
id=uuid.uuid4(),
name="test",
description="Test dataset",
owner_id="owner",
created_at=_CREATED_AT,
tenant_id=_TENANT_ID,
)
uuids = [
"0c193153-2309-4704-9a47-17aee4fb25c8",
"0d11b5fd-8e66-4485-b696-4b55155c0c05",
"90d696f0-f10d-4fd0-b88b-bfee6df08b84",
"4ce2c6d8-5124-4c0c-8292-db7bdebcf167",
"7b5a524c-80fa-4960-888e-7d380f9a11ee",
]
examples = [
Example(
id=uuids[0],
created_at=_CREATED_AT,
inputs={"input": "1"},
outputs={"output": "2"},
dataset_id=str(uuid.uuid4()),
),
Example(
id=uuids[1],
created_at=_CREATED_AT,
inputs={"input": "3"},
outputs={"output": "4"},
dataset_id=str(uuid.uuid4()),
),
Example(
id=uuids[2],
created_at=_CREATED_AT,
inputs={"input": "5"},
outputs={"output": "6"},
dataset_id=str(uuid.uuid4()),
),
Example(
id=uuids[3],
created_at=_CREATED_AT,
inputs={"input": "7"},
outputs={"output": "8"},
dataset_id=str(uuid.uuid4()),
),
Example(
id=uuids[4],
created_at=_CREATED_AT,
inputs={"input": "9"},
outputs={"output": "10"},
dataset_id=str(uuid.uuid4()),
),
]
def mock_read_dataset(*args: Any, **kwargs: Any) -> Dataset:
return dataset
def mock_list_examples(*args: Any, **kwargs: Any) -> List[Example]:
return examples
async def mock_arun_chain(
example: Example,
llm_or_chain: Union[BaseLanguageModel, Chain],
n_repetitions: int,
tags: Optional[List[str]] = None,
callbacks: Optional[Any] = None,
**kwargs: Any,
) -> List[Dict[str, Any]]:
return [
{"result": f"Result for example {example.id}"} for _ in range(n_repetitions)
]
def mock_create_project(*args: Any, **kwargs: Any) -> None:
pass
with mock.patch.object(
LangChainPlusClient, "read_dataset", new=mock_read_dataset
), mock.patch.object(
LangChainPlusClient, "list_examples", new=mock_list_examples
), mock.patch(
"langchain.client.runner_utils._arun_llm_or_chain", new=mock_arun_chain
), mock.patch.object(
LangChainPlusClient, "create_project", new=mock_create_project
):
client = LangChainPlusClient(api_url="http://localhost:1984", api_key="123")
chain = mock.MagicMock()
num_repetitions = 3
results = await arun_on_dataset(
dataset_name="test",
llm_or_chain_factory=lambda: chain,
concurrency_level=2,
project_name="test_project",
num_repetitions=num_repetitions,
client=client,
)
expected = {
uuid_: [
{"result": f"Result for example {uuid.UUID(uuid_)}"}
for _ in range(num_repetitions)
]
for uuid_ in uuids
}
assert results["results"] == expected