mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
429f4dbe4d
If you create a dataset from runs and run the same chain or llm on it later, it usually works great. If you have an agent dataset and want to run a different agent on it, or have more complex schema, it's hard for us to automatically map these values every time. This PR lets you pass in an input_mapper function that converts the example inputs to whatever format your model expects
266 lines
7.7 KiB
Python
266 lines
7.7 KiB
Python
"""Test the LangChain+ client."""
|
|
import uuid
|
|
from datetime import datetime
|
|
from typing import Any, Dict, List, Optional, Union
|
|
from unittest import mock
|
|
|
|
import pytest
|
|
from langchainplus_sdk.client import LangChainPlusClient
|
|
from langchainplus_sdk.schemas import Dataset, Example
|
|
|
|
from langchain.base_language import BaseLanguageModel
|
|
from langchain.chains.base import Chain
|
|
from langchain.chains.transform import TransformChain
|
|
from langchain.client.runner_utils import (
|
|
InputFormatError,
|
|
_get_messages,
|
|
_get_prompts,
|
|
arun_on_dataset,
|
|
run_llm,
|
|
run_llm_or_chain,
|
|
)
|
|
from langchain.schema import LLMResult
|
|
from tests.unit_tests.llms.fake_chat_model import FakeChatModel
|
|
from tests.unit_tests.llms.fake_llm import FakeLLM
|
|
|
|
_CREATED_AT = datetime(2015, 1, 1, 0, 0, 0)
|
|
_TENANT_ID = "7a3d2b56-cd5b-44e5-846f-7eb6e8144ce4"
|
|
_EXAMPLE_MESSAGE = {
|
|
"data": {"content": "Foo", "example": False, "additional_kwargs": {}},
|
|
"type": "human",
|
|
}
|
|
_VALID_MESSAGES = [
|
|
{"messages": [_EXAMPLE_MESSAGE], "other_key": "value"},
|
|
{"messages": [], "other_key": "value"},
|
|
{
|
|
"messages": [[_EXAMPLE_MESSAGE, _EXAMPLE_MESSAGE], [_EXAMPLE_MESSAGE]],
|
|
"other_key": "value",
|
|
},
|
|
{"any_key": [_EXAMPLE_MESSAGE]},
|
|
{"any_key": [[_EXAMPLE_MESSAGE, _EXAMPLE_MESSAGE], [_EXAMPLE_MESSAGE]]},
|
|
]
|
|
_VALID_PROMPTS = [
|
|
{"prompts": ["foo", "bar", "baz"], "other_key": "value"},
|
|
{"prompt": "foo", "other_key": ["bar", "baz"]},
|
|
{"some_key": "foo"},
|
|
{"some_key": ["foo", "bar"]},
|
|
]
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"inputs",
|
|
_VALID_MESSAGES,
|
|
)
|
|
def test__get_messages_valid(inputs: Dict[str, Any]) -> None:
|
|
{"messages": []}
|
|
_get_messages(inputs)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"inputs",
|
|
_VALID_PROMPTS,
|
|
)
|
|
def test__get_prompts_valid(inputs: Dict[str, Any]) -> None:
|
|
_get_prompts(inputs)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"inputs",
|
|
[
|
|
{"prompts": "foo"},
|
|
{"prompt": ["foo"]},
|
|
{"some_key": 3},
|
|
{"some_key": "foo", "other_key": "bar"},
|
|
],
|
|
)
|
|
def test__get_prompts_invalid(inputs: Dict[str, Any]) -> None:
|
|
with pytest.raises(InputFormatError):
|
|
_get_prompts(inputs)
|
|
|
|
|
|
def test_run_llm_or_chain_with_input_mapper() -> None:
|
|
example = Example(
|
|
id=uuid.uuid4(),
|
|
created_at=_CREATED_AT,
|
|
inputs={"the wrong input": "1", "another key": "2"},
|
|
outputs={"output": "2"},
|
|
dataset_id=str(uuid.uuid4()),
|
|
)
|
|
|
|
def run_val(inputs: dict) -> dict:
|
|
assert "the right input" in inputs
|
|
return {"output": "2"}
|
|
|
|
mock_chain = TransformChain(
|
|
input_variables=["the right input"],
|
|
output_variables=["output"],
|
|
transform=run_val,
|
|
)
|
|
|
|
def input_mapper(inputs: dict) -> dict:
|
|
assert "the wrong input" in inputs
|
|
return {"the right input": inputs["the wrong input"]}
|
|
|
|
result = run_llm_or_chain(
|
|
example, lambda: mock_chain, n_repetitions=1, input_mapper=input_mapper
|
|
)
|
|
assert len(result) == 1
|
|
assert result[0] == {"output": "2", "the right input": "1"}
|
|
bad_result = run_llm_or_chain(
|
|
example,
|
|
lambda: mock_chain,
|
|
n_repetitions=1,
|
|
)
|
|
assert len(bad_result) == 1
|
|
assert "Error" in bad_result[0]
|
|
|
|
# Try with LLM
|
|
def llm_input_mapper(inputs: dict) -> List[str]:
|
|
assert "the wrong input" in inputs
|
|
return ["the right input"]
|
|
|
|
mock_llm = FakeLLM(queries={"the right input": "somenumber"})
|
|
result = run_llm_or_chain(
|
|
example, mock_llm, n_repetitions=1, input_mapper=llm_input_mapper
|
|
)
|
|
assert len(result) == 1
|
|
llm_result = result[0]
|
|
assert isinstance(llm_result, LLMResult)
|
|
assert llm_result.generations[0][0].text == "somenumber"
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"inputs",
|
|
[
|
|
{"one_key": [_EXAMPLE_MESSAGE], "other_key": "value"},
|
|
{
|
|
"messages": [[_EXAMPLE_MESSAGE, _EXAMPLE_MESSAGE], _EXAMPLE_MESSAGE],
|
|
"other_key": "value",
|
|
},
|
|
{"prompts": "foo"},
|
|
{},
|
|
],
|
|
)
|
|
def test__get_messages_invalid(inputs: Dict[str, Any]) -> None:
|
|
with pytest.raises(InputFormatError):
|
|
_get_messages(inputs)
|
|
|
|
|
|
@pytest.mark.parametrize("inputs", _VALID_PROMPTS + _VALID_MESSAGES)
|
|
def test_run_llm_all_formats(inputs: Dict[str, Any]) -> None:
|
|
llm = FakeLLM()
|
|
run_llm(llm, inputs, mock.MagicMock())
|
|
|
|
|
|
@pytest.mark.parametrize("inputs", _VALID_MESSAGES + _VALID_PROMPTS)
|
|
def test_run_chat_model_all_formats(inputs: Dict[str, Any]) -> None:
|
|
llm = FakeChatModel()
|
|
run_llm(llm, inputs, mock.MagicMock())
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_arun_on_dataset(monkeypatch: pytest.MonkeyPatch) -> None:
|
|
dataset = Dataset(
|
|
id=uuid.uuid4(),
|
|
name="test",
|
|
description="Test dataset",
|
|
owner_id="owner",
|
|
created_at=_CREATED_AT,
|
|
tenant_id=_TENANT_ID,
|
|
)
|
|
uuids = [
|
|
"0c193153-2309-4704-9a47-17aee4fb25c8",
|
|
"0d11b5fd-8e66-4485-b696-4b55155c0c05",
|
|
"90d696f0-f10d-4fd0-b88b-bfee6df08b84",
|
|
"4ce2c6d8-5124-4c0c-8292-db7bdebcf167",
|
|
"7b5a524c-80fa-4960-888e-7d380f9a11ee",
|
|
]
|
|
examples = [
|
|
Example(
|
|
id=uuids[0],
|
|
created_at=_CREATED_AT,
|
|
inputs={"input": "1"},
|
|
outputs={"output": "2"},
|
|
dataset_id=str(uuid.uuid4()),
|
|
),
|
|
Example(
|
|
id=uuids[1],
|
|
created_at=_CREATED_AT,
|
|
inputs={"input": "3"},
|
|
outputs={"output": "4"},
|
|
dataset_id=str(uuid.uuid4()),
|
|
),
|
|
Example(
|
|
id=uuids[2],
|
|
created_at=_CREATED_AT,
|
|
inputs={"input": "5"},
|
|
outputs={"output": "6"},
|
|
dataset_id=str(uuid.uuid4()),
|
|
),
|
|
Example(
|
|
id=uuids[3],
|
|
created_at=_CREATED_AT,
|
|
inputs={"input": "7"},
|
|
outputs={"output": "8"},
|
|
dataset_id=str(uuid.uuid4()),
|
|
),
|
|
Example(
|
|
id=uuids[4],
|
|
created_at=_CREATED_AT,
|
|
inputs={"input": "9"},
|
|
outputs={"output": "10"},
|
|
dataset_id=str(uuid.uuid4()),
|
|
),
|
|
]
|
|
|
|
def mock_read_dataset(*args: Any, **kwargs: Any) -> Dataset:
|
|
return dataset
|
|
|
|
def mock_list_examples(*args: Any, **kwargs: Any) -> List[Example]:
|
|
return examples
|
|
|
|
async def mock_arun_chain(
|
|
example: Example,
|
|
llm_or_chain: Union[BaseLanguageModel, Chain],
|
|
n_repetitions: int,
|
|
tags: Optional[List[str]] = None,
|
|
callbacks: Optional[Any] = None,
|
|
**kwargs: Any,
|
|
) -> List[Dict[str, Any]]:
|
|
return [
|
|
{"result": f"Result for example {example.id}"} for _ in range(n_repetitions)
|
|
]
|
|
|
|
def mock_create_project(*args: Any, **kwargs: Any) -> None:
|
|
pass
|
|
|
|
with mock.patch.object(
|
|
LangChainPlusClient, "read_dataset", new=mock_read_dataset
|
|
), mock.patch.object(
|
|
LangChainPlusClient, "list_examples", new=mock_list_examples
|
|
), mock.patch(
|
|
"langchain.client.runner_utils._arun_llm_or_chain", new=mock_arun_chain
|
|
), mock.patch.object(
|
|
LangChainPlusClient, "create_project", new=mock_create_project
|
|
):
|
|
client = LangChainPlusClient(api_url="http://localhost:1984", api_key="123")
|
|
chain = mock.MagicMock()
|
|
num_repetitions = 3
|
|
results = await arun_on_dataset(
|
|
dataset_name="test",
|
|
llm_or_chain_factory=lambda: chain,
|
|
concurrency_level=2,
|
|
project_name="test_project",
|
|
num_repetitions=num_repetitions,
|
|
client=client,
|
|
)
|
|
|
|
expected = {
|
|
uuid_: [
|
|
{"result": f"Result for example {uuid.UUID(uuid_)}"}
|
|
for _ in range(num_repetitions)
|
|
]
|
|
for uuid_ in uuids
|
|
}
|
|
assert results["results"] == expected
|