langchain/tests/integration_tests/vectorstores/test_clarifai.py
minhajul-clarifai 6e57306a13
Clarifai integration (#5954)
# Changes
This PR adds [Clarifai](https://www.clarifai.com/) integration to
Langchain. Clarifai is an end-to-end AI Platform. Clarifai offers user
the ability to use many types of LLM (OpenAI, cohere, ect and other open
source models). As well, a clarifai app can be treated as a vector
database to upload and retrieve data. The integrations includes:
- Clarifai LLM integration: Clarifai supports many types of language
model that users can utilize for their application
- Clarifai VectorDB: A Clarifai application can hold data and
embeddings. You can run semantic search with the embeddings

#### Before submitting
- [x] Added integration test for LLM 
- [x] Added integration test for VectorDB 
- [x] Added notebook for LLM 
- [x] Added notebook for VectorDB 

Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
2023-06-22 08:00:15 -07:00

87 lines
2.6 KiB
Python

"""Test Clarifai vectore store functionality."""
import time
from langchain.docstore.document import Document
from langchain.vectorstores import Clarifai
def test_clarifai_with_from_texts() -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
USER_ID = "minhajul"
APP_ID = "test-lang-2"
NUMBER_OF_DOCS = 1
docsearch = Clarifai.from_texts(
user_id=USER_ID,
app_id=APP_ID,
texts=texts,
pat=None,
number_of_docs=NUMBER_OF_DOCS,
)
time.sleep(2.5)
output = docsearch.similarity_search("foo")
assert output == [Document(page_content="foo")]
def test_clarifai_with_from_documents() -> None:
"""Test end to end construction and search."""
# Initial document content and id
initial_content = "foo"
# Create an instance of Document with initial content and metadata
original_doc = Document(page_content=initial_content, metadata={"page": "0"})
USER_ID = "minhajul"
APP_ID = "test-lang-2"
NUMBER_OF_DOCS = 1
docsearch = Clarifai.from_documents(
user_id=USER_ID,
app_id=APP_ID,
documents=[original_doc],
pat=None,
number_of_docs=NUMBER_OF_DOCS,
)
time.sleep(2.5)
output = docsearch.similarity_search("foo")
assert output == [Document(page_content=initial_content, metadata={"page": "0"})]
def test_clarifai_with_metadatas() -> None:
"""Test end to end construction and search with metadata."""
texts = ["oof", "rab", "zab"]
metadatas = [{"page": str(i)} for i in range(len(texts))]
USER_ID = "minhajul"
APP_ID = "test-lang-2"
NUMBER_OF_DOCS = 1
docsearch = Clarifai.from_texts(
user_id=USER_ID,
app_id=APP_ID,
texts=texts,
pat=None,
number_of_docs=NUMBER_OF_DOCS,
metadatas=metadatas,
)
time.sleep(2.5)
output = docsearch.similarity_search("oof", k=1)
assert output == [Document(page_content="oof", metadata={"page": "0"})]
def test_clarifai_with_metadatas_with_scores() -> None:
"""Test end to end construction and scored search."""
texts = ["oof", "rab", "zab"]
metadatas = [{"page": str(i)} for i in range(len(texts))]
USER_ID = "minhajul"
APP_ID = "test-lang-2"
NUMBER_OF_DOCS = 1
docsearch = Clarifai.from_texts(
user_id=USER_ID,
app_id=APP_ID,
texts=texts,
pat=None,
number_of_docs=NUMBER_OF_DOCS,
metadatas=metadatas,
)
time.sleep(2.5)
output = docsearch.similarity_search_with_score("oof", k=1)
assert output[0][0] == Document(page_content="oof", metadata={"page": "0"})
assert abs(output[0][1] - 1.0) < 0.001