mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
7c0f1bf23f
Part of upgrading our CI to use Poetry 1.6.1.
128 lines
4.3 KiB
Python
128 lines
4.3 KiB
Python
"""Chain that interprets a prompt and executes bash operations."""
|
|
from __future__ import annotations
|
|
|
|
import logging
|
|
import warnings
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
from langchain.callbacks.manager import CallbackManagerForChainRun
|
|
from langchain.chains.base import Chain
|
|
from langchain.chains.llm import LLMChain
|
|
from langchain.schema import BasePromptTemplate, OutputParserException
|
|
from langchain.schema.language_model import BaseLanguageModel
|
|
|
|
from langchain_experimental.llm_bash.bash import BashProcess
|
|
from langchain_experimental.llm_bash.prompt import PROMPT
|
|
from langchain_experimental.pydantic_v1 import Extra, Field, root_validator
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class LLMBashChain(Chain):
|
|
"""Chain that interprets a prompt and executes bash operations.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain.chains import LLMBashChain
|
|
from langchain.llms import OpenAI
|
|
llm_bash = LLMBashChain.from_llm(OpenAI())
|
|
"""
|
|
|
|
llm_chain: LLMChain
|
|
llm: Optional[BaseLanguageModel] = None
|
|
"""[Deprecated] LLM wrapper to use."""
|
|
input_key: str = "question" #: :meta private:
|
|
output_key: str = "answer" #: :meta private:
|
|
prompt: BasePromptTemplate = PROMPT
|
|
"""[Deprecated]"""
|
|
bash_process: BashProcess = Field(default_factory=BashProcess) #: :meta private:
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic object."""
|
|
|
|
extra = Extra.forbid
|
|
arbitrary_types_allowed = True
|
|
|
|
@root_validator(pre=True)
|
|
def raise_deprecation(cls, values: Dict) -> Dict:
|
|
if "llm" in values:
|
|
warnings.warn(
|
|
"Directly instantiating an LLMBashChain with an llm is deprecated. "
|
|
"Please instantiate with llm_chain or using the from_llm class method."
|
|
)
|
|
if "llm_chain" not in values and values["llm"] is not None:
|
|
prompt = values.get("prompt", PROMPT)
|
|
values["llm_chain"] = LLMChain(llm=values["llm"], prompt=prompt)
|
|
return values
|
|
|
|
# TODO: move away from `root_validator` since it is deprecated in pydantic v2
|
|
# and causes mypy type-checking failures (hence the `type: ignore`)
|
|
@root_validator # type: ignore[call-overload]
|
|
def validate_prompt(cls, values: Dict) -> Dict:
|
|
if values["llm_chain"].prompt.output_parser is None:
|
|
raise ValueError(
|
|
"The prompt used by llm_chain is expected to have an output_parser."
|
|
)
|
|
return values
|
|
|
|
@property
|
|
def input_keys(self) -> List[str]:
|
|
"""Expect input key.
|
|
|
|
:meta private:
|
|
"""
|
|
return [self.input_key]
|
|
|
|
@property
|
|
def output_keys(self) -> List[str]:
|
|
"""Expect output key.
|
|
|
|
:meta private:
|
|
"""
|
|
return [self.output_key]
|
|
|
|
def _call(
|
|
self,
|
|
inputs: Dict[str, Any],
|
|
run_manager: Optional[CallbackManagerForChainRun] = None,
|
|
) -> Dict[str, str]:
|
|
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
|
|
_run_manager.on_text(inputs[self.input_key], verbose=self.verbose)
|
|
|
|
t = self.llm_chain.predict(
|
|
question=inputs[self.input_key], callbacks=_run_manager.get_child()
|
|
)
|
|
_run_manager.on_text(t, color="green", verbose=self.verbose)
|
|
t = t.strip()
|
|
try:
|
|
parser = self.llm_chain.prompt.output_parser
|
|
command_list = parser.parse(t) # type: ignore[union-attr]
|
|
except OutputParserException as e:
|
|
_run_manager.on_chain_error(e, verbose=self.verbose)
|
|
raise e
|
|
|
|
if self.verbose:
|
|
_run_manager.on_text("\nCode: ", verbose=self.verbose)
|
|
_run_manager.on_text(
|
|
str(command_list), color="yellow", verbose=self.verbose
|
|
)
|
|
output = self.bash_process.run(command_list)
|
|
_run_manager.on_text("\nAnswer: ", verbose=self.verbose)
|
|
_run_manager.on_text(output, color="yellow", verbose=self.verbose)
|
|
return {self.output_key: output}
|
|
|
|
@property
|
|
def _chain_type(self) -> str:
|
|
return "llm_bash_chain"
|
|
|
|
@classmethod
|
|
def from_llm(
|
|
cls,
|
|
llm: BaseLanguageModel,
|
|
prompt: BasePromptTemplate = PROMPT,
|
|
**kwargs: Any,
|
|
) -> LLMBashChain:
|
|
llm_chain = LLMChain(llm=llm, prompt=prompt)
|
|
return cls(llm_chain=llm_chain, **kwargs)
|