mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
ed58eeb9c5
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
221 lines
8.3 KiB
Python
221 lines
8.3 KiB
Python
"""Chain that calls SerpAPI.
|
|
|
|
Heavily borrowed from https://github.com/ofirpress/self-ask
|
|
"""
|
|
import os
|
|
import sys
|
|
from typing import Any, Dict, Optional, Tuple
|
|
|
|
import aiohttp
|
|
from langchain_core.pydantic_v1 import BaseModel, Extra, Field, root_validator
|
|
from langchain_core.utils import get_from_dict_or_env
|
|
|
|
|
|
class HiddenPrints:
|
|
"""Context manager to hide prints."""
|
|
|
|
def __enter__(self) -> None:
|
|
"""Open file to pipe stdout to."""
|
|
self._original_stdout = sys.stdout
|
|
sys.stdout = open(os.devnull, "w")
|
|
|
|
def __exit__(self, *_: Any) -> None:
|
|
"""Close file that stdout was piped to."""
|
|
sys.stdout.close()
|
|
sys.stdout = self._original_stdout
|
|
|
|
|
|
class SerpAPIWrapper(BaseModel):
|
|
"""Wrapper around SerpAPI.
|
|
|
|
To use, you should have the ``google-search-results`` python package installed,
|
|
and the environment variable ``SERPAPI_API_KEY`` set with your API key, or pass
|
|
`serpapi_api_key` as a named parameter to the constructor.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.utilities import SerpAPIWrapper
|
|
serpapi = SerpAPIWrapper()
|
|
"""
|
|
|
|
search_engine: Any #: :meta private:
|
|
params: dict = Field(
|
|
default={
|
|
"engine": "google",
|
|
"google_domain": "google.com",
|
|
"gl": "us",
|
|
"hl": "en",
|
|
}
|
|
)
|
|
serpapi_api_key: Optional[str] = None
|
|
aiosession: Optional[aiohttp.ClientSession] = None
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic object."""
|
|
|
|
extra = Extra.forbid
|
|
arbitrary_types_allowed = True
|
|
|
|
@root_validator()
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate that api key and python package exists in environment."""
|
|
serpapi_api_key = get_from_dict_or_env(
|
|
values, "serpapi_api_key", "SERPAPI_API_KEY"
|
|
)
|
|
values["serpapi_api_key"] = serpapi_api_key
|
|
try:
|
|
from serpapi import GoogleSearch
|
|
|
|
values["search_engine"] = GoogleSearch
|
|
except ImportError:
|
|
raise ValueError(
|
|
"Could not import serpapi python package. "
|
|
"Please install it with `pip install google-search-results`."
|
|
)
|
|
return values
|
|
|
|
async def arun(self, query: str, **kwargs: Any) -> str:
|
|
"""Run query through SerpAPI and parse result async."""
|
|
return self._process_response(await self.aresults(query))
|
|
|
|
def run(self, query: str, **kwargs: Any) -> str:
|
|
"""Run query through SerpAPI and parse result."""
|
|
return self._process_response(self.results(query))
|
|
|
|
def results(self, query: str) -> dict:
|
|
"""Run query through SerpAPI and return the raw result."""
|
|
params = self.get_params(query)
|
|
with HiddenPrints():
|
|
search = self.search_engine(params)
|
|
res = search.get_dict()
|
|
return res
|
|
|
|
async def aresults(self, query: str) -> dict:
|
|
"""Use aiohttp to run query through SerpAPI and return the results async."""
|
|
|
|
def construct_url_and_params() -> Tuple[str, Dict[str, str]]:
|
|
params = self.get_params(query)
|
|
params["source"] = "python"
|
|
if self.serpapi_api_key:
|
|
params["serp_api_key"] = self.serpapi_api_key
|
|
params["output"] = "json"
|
|
url = "https://serpapi.com/search"
|
|
return url, params
|
|
|
|
url, params = construct_url_and_params()
|
|
if not self.aiosession:
|
|
async with aiohttp.ClientSession() as session:
|
|
async with session.get(url, params=params) as response:
|
|
res = await response.json()
|
|
else:
|
|
async with self.aiosession.get(url, params=params) as response:
|
|
res = await response.json()
|
|
|
|
return res
|
|
|
|
def get_params(self, query: str) -> Dict[str, str]:
|
|
"""Get parameters for SerpAPI."""
|
|
_params = {
|
|
"api_key": self.serpapi_api_key,
|
|
"q": query,
|
|
}
|
|
params = {**self.params, **_params}
|
|
return params
|
|
|
|
@staticmethod
|
|
def _process_response(res: dict) -> str:
|
|
"""Process response from SerpAPI."""
|
|
if "error" in res.keys():
|
|
raise ValueError(f"Got error from SerpAPI: {res['error']}")
|
|
if "answer_box_list" in res.keys():
|
|
res["answer_box"] = res["answer_box_list"]
|
|
if "answer_box" in res.keys():
|
|
answer_box = res["answer_box"]
|
|
if isinstance(answer_box, list):
|
|
answer_box = answer_box[0]
|
|
if "result" in answer_box.keys():
|
|
return answer_box["result"]
|
|
elif "answer" in answer_box.keys():
|
|
return answer_box["answer"]
|
|
elif "snippet" in answer_box.keys():
|
|
return answer_box["snippet"]
|
|
elif "snippet_highlighted_words" in answer_box.keys():
|
|
return answer_box["snippet_highlighted_words"]
|
|
else:
|
|
answer = {}
|
|
for key, value in answer_box.items():
|
|
if not isinstance(value, (list, dict)) and not (
|
|
isinstance(value, str) and value.startswith("http")
|
|
):
|
|
answer[key] = value
|
|
return str(answer)
|
|
elif "events_results" in res.keys():
|
|
return res["events_results"][:10]
|
|
elif "sports_results" in res.keys():
|
|
return res["sports_results"]
|
|
elif "top_stories" in res.keys():
|
|
return res["top_stories"]
|
|
elif "news_results" in res.keys():
|
|
return res["news_results"]
|
|
elif "jobs_results" in res.keys() and "jobs" in res["jobs_results"].keys():
|
|
return res["jobs_results"]["jobs"]
|
|
elif (
|
|
"shopping_results" in res.keys()
|
|
and "title" in res["shopping_results"][0].keys()
|
|
):
|
|
return res["shopping_results"][:3]
|
|
elif "questions_and_answers" in res.keys():
|
|
return res["questions_and_answers"]
|
|
elif (
|
|
"popular_destinations" in res.keys()
|
|
and "destinations" in res["popular_destinations"].keys()
|
|
):
|
|
return res["popular_destinations"]["destinations"]
|
|
elif "top_sights" in res.keys() and "sights" in res["top_sights"].keys():
|
|
return res["top_sights"]["sights"]
|
|
elif (
|
|
"images_results" in res.keys()
|
|
and "thumbnail" in res["images_results"][0].keys()
|
|
):
|
|
return str([item["thumbnail"] for item in res["images_results"][:10]])
|
|
|
|
snippets = []
|
|
if "knowledge_graph" in res.keys():
|
|
knowledge_graph = res["knowledge_graph"]
|
|
title = knowledge_graph["title"] if "title" in knowledge_graph else ""
|
|
if "description" in knowledge_graph.keys():
|
|
snippets.append(knowledge_graph["description"])
|
|
for key, value in knowledge_graph.items():
|
|
if (
|
|
isinstance(key, str)
|
|
and isinstance(value, str)
|
|
and key not in ["title", "description"]
|
|
and not key.endswith("_stick")
|
|
and not key.endswith("_link")
|
|
and not value.startswith("http")
|
|
):
|
|
snippets.append(f"{title} {key}: {value}.")
|
|
|
|
for organic_result in res.get("organic_results", []):
|
|
if "snippet" in organic_result.keys():
|
|
snippets.append(organic_result["snippet"])
|
|
elif "snippet_highlighted_words" in organic_result.keys():
|
|
snippets.append(organic_result["snippet_highlighted_words"])
|
|
elif "rich_snippet" in organic_result.keys():
|
|
snippets.append(organic_result["rich_snippet"])
|
|
elif "rich_snippet_table" in organic_result.keys():
|
|
snippets.append(organic_result["rich_snippet_table"])
|
|
elif "link" in organic_result.keys():
|
|
snippets.append(organic_result["link"])
|
|
|
|
if "buying_guide" in res.keys():
|
|
snippets.append(res["buying_guide"])
|
|
if "local_results" in res.keys() and "places" in res["local_results"].keys():
|
|
snippets.append(res["local_results"]["places"])
|
|
|
|
if len(snippets) > 0:
|
|
return str(snippets)
|
|
else:
|
|
return "No good search result found"
|