mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
ed58eeb9c5
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
83 lines
2.4 KiB
Python
83 lines
2.4 KiB
Python
"""Util that calls Lambda."""
|
|
import json
|
|
from typing import Any, Dict, Optional
|
|
|
|
from langchain_core.pydantic_v1 import BaseModel, Extra, root_validator
|
|
|
|
|
|
class LambdaWrapper(BaseModel):
|
|
"""Wrapper for AWS Lambda SDK.
|
|
To use, you should have the ``boto3`` package installed
|
|
and a lambda functions built from the AWS Console or
|
|
CLI. Set up your AWS credentials with ``aws configure``
|
|
|
|
Example:
|
|
.. code-block:: bash
|
|
|
|
pip install boto3
|
|
|
|
aws configure
|
|
|
|
"""
|
|
|
|
lambda_client: Any #: :meta private:
|
|
"""The configured boto3 client"""
|
|
function_name: Optional[str] = None
|
|
"""The name of your lambda function"""
|
|
awslambda_tool_name: Optional[str] = None
|
|
"""If passing to an agent as a tool, the tool name"""
|
|
awslambda_tool_description: Optional[str] = None
|
|
"""If passing to an agent as a tool, the description"""
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic object."""
|
|
|
|
extra = Extra.forbid
|
|
|
|
@root_validator()
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate that python package exists in environment."""
|
|
|
|
try:
|
|
import boto3
|
|
|
|
except ImportError:
|
|
raise ImportError(
|
|
"boto3 is not installed. Please install it with `pip install boto3`"
|
|
)
|
|
|
|
values["lambda_client"] = boto3.client("lambda")
|
|
values["function_name"] = values["function_name"]
|
|
|
|
return values
|
|
|
|
def run(self, query: str) -> str:
|
|
"""
|
|
Invokes the lambda function and returns the
|
|
result.
|
|
|
|
Args:
|
|
query: an input to passed to the lambda
|
|
function as the ``body`` of a JSON
|
|
object.
|
|
""" # noqa: E501
|
|
res = self.lambda_client.invoke(
|
|
FunctionName=self.function_name,
|
|
InvocationType="RequestResponse",
|
|
Payload=json.dumps({"body": query}),
|
|
)
|
|
|
|
try:
|
|
payload_stream = res["Payload"]
|
|
payload_string = payload_stream.read().decode("utf-8")
|
|
answer = json.loads(payload_string)["body"]
|
|
|
|
except StopIteration:
|
|
return "Failed to parse response from Lambda"
|
|
|
|
if answer is None or answer == "":
|
|
# We don't want to return the assumption alone if answer is empty
|
|
return "Request failed."
|
|
else:
|
|
return f"Result: {answer}"
|