mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
ed58eeb9c5
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
60 lines
2.0 KiB
Python
60 lines
2.0 KiB
Python
"""Loads rich text files."""
|
|
from typing import Any, List
|
|
|
|
from langchain_community.document_loaders.unstructured import (
|
|
UnstructuredFileLoader,
|
|
satisfies_min_unstructured_version,
|
|
)
|
|
|
|
|
|
class UnstructuredRTFLoader(UnstructuredFileLoader):
|
|
"""Load `RTF` files using `Unstructured`.
|
|
|
|
You can run the loader in one of two modes: "single" and "elements".
|
|
If you use "single" mode, the document will be returned as a single
|
|
langchain Document object. If you use "elements" mode, the unstructured
|
|
library will split the document into elements such as Title and NarrativeText.
|
|
You can pass in additional unstructured kwargs after mode to apply
|
|
different unstructured settings.
|
|
|
|
Examples
|
|
--------
|
|
from langchain_community.document_loaders import UnstructuredRTFLoader
|
|
|
|
loader = UnstructuredRTFLoader(
|
|
"example.rtf", mode="elements", strategy="fast",
|
|
)
|
|
docs = loader.load()
|
|
|
|
References
|
|
----------
|
|
https://unstructured-io.github.io/unstructured/bricks.html#partition-rtf
|
|
"""
|
|
|
|
def __init__(
|
|
self, file_path: str, mode: str = "single", **unstructured_kwargs: Any
|
|
):
|
|
"""
|
|
Initialize with a file path.
|
|
|
|
Args:
|
|
file_path: The path to the file to load.
|
|
mode: The mode to use for partitioning. See unstructured for details.
|
|
Defaults to "single".
|
|
**unstructured_kwargs: Additional keyword arguments to pass
|
|
to unstructured.
|
|
"""
|
|
min_unstructured_version = "0.5.12"
|
|
if not satisfies_min_unstructured_version(min_unstructured_version):
|
|
raise ValueError(
|
|
"Partitioning rtf files is only supported in "
|
|
f"unstructured>={min_unstructured_version}."
|
|
)
|
|
|
|
super().__init__(file_path=file_path, mode=mode, **unstructured_kwargs)
|
|
|
|
def _get_elements(self) -> List:
|
|
from unstructured.partition.rtf import partition_rtf
|
|
|
|
return partition_rtf(filename=self.file_path, **self.unstructured_kwargs)
|