mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
ed58eeb9c5
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
744 lines
27 KiB
Python
744 lines
27 KiB
Python
import logging
|
|
from enum import Enum
|
|
from io import BytesIO
|
|
from typing import Any, Callable, Dict, List, Optional, Union
|
|
|
|
import requests
|
|
from langchain_core.documents import Document
|
|
from tenacity import (
|
|
before_sleep_log,
|
|
retry,
|
|
stop_after_attempt,
|
|
wait_exponential,
|
|
)
|
|
|
|
from langchain_community.document_loaders.base import BaseLoader
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class ContentFormat(str, Enum):
|
|
"""Enumerator of the content formats of Confluence page."""
|
|
|
|
EDITOR = "body.editor"
|
|
EXPORT_VIEW = "body.export_view"
|
|
ANONYMOUS_EXPORT_VIEW = "body.anonymous_export_view"
|
|
STORAGE = "body.storage"
|
|
VIEW = "body.view"
|
|
|
|
def get_content(self, page: dict) -> str:
|
|
return page["body"][self.name.lower()]["value"]
|
|
|
|
|
|
class ConfluenceLoader(BaseLoader):
|
|
"""Load `Confluence` pages.
|
|
|
|
Port of https://llamahub.ai/l/confluence
|
|
This currently supports username/api_key, Oauth2 login or personal access token
|
|
authentication.
|
|
|
|
Specify a list page_ids and/or space_key to load in the corresponding pages into
|
|
Document objects, if both are specified the union of both sets will be returned.
|
|
|
|
You can also specify a boolean `include_attachments` to include attachments, this
|
|
is set to False by default, if set to True all attachments will be downloaded and
|
|
ConfluenceReader will extract the text from the attachments and add it to the
|
|
Document object. Currently supported attachment types are: PDF, PNG, JPEG/JPG,
|
|
SVG, Word and Excel.
|
|
|
|
Confluence API supports difference format of page content. The storage format is the
|
|
raw XML representation for storage. The view format is the HTML representation for
|
|
viewing with macros are rendered as though it is viewed by users. You can pass
|
|
a enum `content_format` argument to `load()` to specify the content format, this is
|
|
set to `ContentFormat.STORAGE` by default, the supported values are:
|
|
`ContentFormat.EDITOR`, `ContentFormat.EXPORT_VIEW`,
|
|
`ContentFormat.ANONYMOUS_EXPORT_VIEW`, `ContentFormat.STORAGE`,
|
|
and `ContentFormat.VIEW`.
|
|
|
|
Hint: space_key and page_id can both be found in the URL of a page in Confluence
|
|
- https://yoursite.atlassian.com/wiki/spaces/<space_key>/pages/<page_id>
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.document_loaders import ConfluenceLoader
|
|
|
|
loader = ConfluenceLoader(
|
|
url="https://yoursite.atlassian.com/wiki",
|
|
username="me",
|
|
api_key="12345"
|
|
)
|
|
documents = loader.load(space_key="SPACE",limit=50)
|
|
|
|
# Server on perm
|
|
loader = ConfluenceLoader(
|
|
url="https://confluence.yoursite.com/",
|
|
username="me",
|
|
api_key="your_password",
|
|
cloud=False
|
|
)
|
|
documents = loader.load(space_key="SPACE",limit=50)
|
|
|
|
:param url: _description_
|
|
:type url: str
|
|
:param api_key: _description_, defaults to None
|
|
:type api_key: str, optional
|
|
:param username: _description_, defaults to None
|
|
:type username: str, optional
|
|
:param oauth2: _description_, defaults to {}
|
|
:type oauth2: dict, optional
|
|
:param token: _description_, defaults to None
|
|
:type token: str, optional
|
|
:param cloud: _description_, defaults to True
|
|
:type cloud: bool, optional
|
|
:param number_of_retries: How many times to retry, defaults to 3
|
|
:type number_of_retries: Optional[int], optional
|
|
:param min_retry_seconds: defaults to 2
|
|
:type min_retry_seconds: Optional[int], optional
|
|
:param max_retry_seconds: defaults to 10
|
|
:type max_retry_seconds: Optional[int], optional
|
|
:param confluence_kwargs: additional kwargs to initialize confluence with
|
|
:type confluence_kwargs: dict, optional
|
|
:raises ValueError: Errors while validating input
|
|
:raises ImportError: Required dependencies not installed.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
url: str,
|
|
api_key: Optional[str] = None,
|
|
username: Optional[str] = None,
|
|
session: Optional[requests.Session] = None,
|
|
oauth2: Optional[dict] = None,
|
|
token: Optional[str] = None,
|
|
cloud: Optional[bool] = True,
|
|
number_of_retries: Optional[int] = 3,
|
|
min_retry_seconds: Optional[int] = 2,
|
|
max_retry_seconds: Optional[int] = 10,
|
|
confluence_kwargs: Optional[dict] = None,
|
|
):
|
|
confluence_kwargs = confluence_kwargs or {}
|
|
errors = ConfluenceLoader.validate_init_args(
|
|
url=url,
|
|
api_key=api_key,
|
|
username=username,
|
|
session=session,
|
|
oauth2=oauth2,
|
|
token=token,
|
|
)
|
|
if errors:
|
|
raise ValueError(f"Error(s) while validating input: {errors}")
|
|
try:
|
|
from atlassian import Confluence # noqa: F401
|
|
except ImportError:
|
|
raise ImportError(
|
|
"`atlassian` package not found, please run "
|
|
"`pip install atlassian-python-api`"
|
|
)
|
|
|
|
self.base_url = url
|
|
self.number_of_retries = number_of_retries
|
|
self.min_retry_seconds = min_retry_seconds
|
|
self.max_retry_seconds = max_retry_seconds
|
|
|
|
if session:
|
|
self.confluence = Confluence(url=url, session=session, **confluence_kwargs)
|
|
elif oauth2:
|
|
self.confluence = Confluence(
|
|
url=url, oauth2=oauth2, cloud=cloud, **confluence_kwargs
|
|
)
|
|
elif token:
|
|
self.confluence = Confluence(
|
|
url=url, token=token, cloud=cloud, **confluence_kwargs
|
|
)
|
|
else:
|
|
self.confluence = Confluence(
|
|
url=url,
|
|
username=username,
|
|
password=api_key,
|
|
cloud=cloud,
|
|
**confluence_kwargs,
|
|
)
|
|
|
|
@staticmethod
|
|
def validate_init_args(
|
|
url: Optional[str] = None,
|
|
api_key: Optional[str] = None,
|
|
username: Optional[str] = None,
|
|
session: Optional[requests.Session] = None,
|
|
oauth2: Optional[dict] = None,
|
|
token: Optional[str] = None,
|
|
) -> Union[List, None]:
|
|
"""Validates proper combinations of init arguments"""
|
|
|
|
errors = []
|
|
if url is None:
|
|
errors.append("Must provide `base_url`")
|
|
|
|
if (api_key and not username) or (username and not api_key):
|
|
errors.append(
|
|
"If one of `api_key` or `username` is provided, "
|
|
"the other must be as well."
|
|
)
|
|
|
|
non_null_creds = list(
|
|
x is not None for x in ((api_key or username), session, oauth2, token)
|
|
)
|
|
if sum(non_null_creds) > 1:
|
|
all_names = ("(api_key, username)", "session", "oath2", "token")
|
|
provided = tuple(n for x, n in zip(non_null_creds, all_names) if x)
|
|
errors.append(
|
|
f"Cannot provide a value for more than one of: {all_names}. Received "
|
|
f"values for: {provided}"
|
|
)
|
|
if oauth2 and set(oauth2.keys()) != {
|
|
"access_token",
|
|
"access_token_secret",
|
|
"consumer_key",
|
|
"key_cert",
|
|
}:
|
|
errors.append(
|
|
"You have either omitted require keys or added extra "
|
|
"keys to the oauth2 dictionary. key values should be "
|
|
"`['access_token', 'access_token_secret', 'consumer_key', 'key_cert']`"
|
|
)
|
|
return errors or None
|
|
|
|
def load(
|
|
self,
|
|
space_key: Optional[str] = None,
|
|
page_ids: Optional[List[str]] = None,
|
|
label: Optional[str] = None,
|
|
cql: Optional[str] = None,
|
|
include_restricted_content: bool = False,
|
|
include_archived_content: bool = False,
|
|
include_attachments: bool = False,
|
|
include_comments: bool = False,
|
|
content_format: ContentFormat = ContentFormat.STORAGE,
|
|
limit: Optional[int] = 50,
|
|
max_pages: Optional[int] = 1000,
|
|
ocr_languages: Optional[str] = None,
|
|
keep_markdown_format: bool = False,
|
|
keep_newlines: bool = False,
|
|
) -> List[Document]:
|
|
"""
|
|
:param space_key: Space key retrieved from a confluence URL, defaults to None
|
|
:type space_key: Optional[str], optional
|
|
:param page_ids: List of specific page IDs to load, defaults to None
|
|
:type page_ids: Optional[List[str]], optional
|
|
:param label: Get all pages with this label, defaults to None
|
|
:type label: Optional[str], optional
|
|
:param cql: CQL Expression, defaults to None
|
|
:type cql: Optional[str], optional
|
|
:param include_restricted_content: defaults to False
|
|
:type include_restricted_content: bool, optional
|
|
:param include_archived_content: Whether to include archived content,
|
|
defaults to False
|
|
:type include_archived_content: bool, optional
|
|
:param include_attachments: defaults to False
|
|
:type include_attachments: bool, optional
|
|
:param include_comments: defaults to False
|
|
:type include_comments: bool, optional
|
|
:param content_format: Specify content format, defaults to
|
|
ContentFormat.STORAGE, the supported values are:
|
|
`ContentFormat.EDITOR`, `ContentFormat.EXPORT_VIEW`,
|
|
`ContentFormat.ANONYMOUS_EXPORT_VIEW`,
|
|
`ContentFormat.STORAGE`, and `ContentFormat.VIEW`.
|
|
:type content_format: ContentFormat
|
|
:param limit: Maximum number of pages to retrieve per request, defaults to 50
|
|
:type limit: int, optional
|
|
:param max_pages: Maximum number of pages to retrieve in total, defaults 1000
|
|
:type max_pages: int, optional
|
|
:param ocr_languages: The languages to use for the Tesseract agent. To use a
|
|
language, you'll first need to install the appropriate
|
|
Tesseract language pack.
|
|
:type ocr_languages: str, optional
|
|
:param keep_markdown_format: Whether to keep the markdown format, defaults to
|
|
False
|
|
:type keep_markdown_format: bool
|
|
:param keep_newlines: Whether to keep the newlines format, defaults to
|
|
False
|
|
:type keep_newlines: bool
|
|
:raises ValueError: _description_
|
|
:raises ImportError: _description_
|
|
:return: _description_
|
|
:rtype: List[Document]
|
|
"""
|
|
if not space_key and not page_ids and not label and not cql:
|
|
raise ValueError(
|
|
"Must specify at least one among `space_key`, `page_ids`, "
|
|
"`label`, `cql` parameters."
|
|
)
|
|
|
|
docs = []
|
|
|
|
if space_key:
|
|
pages = self.paginate_request(
|
|
self.confluence.get_all_pages_from_space,
|
|
space=space_key,
|
|
limit=limit,
|
|
max_pages=max_pages,
|
|
status="any" if include_archived_content else "current",
|
|
expand=content_format.value,
|
|
)
|
|
docs += self.process_pages(
|
|
pages,
|
|
include_restricted_content,
|
|
include_attachments,
|
|
include_comments,
|
|
content_format,
|
|
ocr_languages=ocr_languages,
|
|
keep_markdown_format=keep_markdown_format,
|
|
keep_newlines=keep_newlines,
|
|
)
|
|
|
|
if label:
|
|
pages = self.paginate_request(
|
|
self.confluence.get_all_pages_by_label,
|
|
label=label,
|
|
limit=limit,
|
|
max_pages=max_pages,
|
|
)
|
|
ids_by_label = [page["id"] for page in pages]
|
|
if page_ids:
|
|
page_ids = list(set(page_ids + ids_by_label))
|
|
else:
|
|
page_ids = list(set(ids_by_label))
|
|
|
|
if cql:
|
|
pages = self.paginate_request(
|
|
self._search_content_by_cql,
|
|
cql=cql,
|
|
limit=limit,
|
|
max_pages=max_pages,
|
|
include_archived_spaces=include_archived_content,
|
|
expand=content_format.value,
|
|
)
|
|
docs += self.process_pages(
|
|
pages,
|
|
include_restricted_content,
|
|
include_attachments,
|
|
include_comments,
|
|
content_format,
|
|
ocr_languages,
|
|
keep_markdown_format,
|
|
)
|
|
|
|
if page_ids:
|
|
for page_id in page_ids:
|
|
get_page = retry(
|
|
reraise=True,
|
|
stop=stop_after_attempt(
|
|
self.number_of_retries # type: ignore[arg-type]
|
|
),
|
|
wait=wait_exponential(
|
|
multiplier=1, # type: ignore[arg-type]
|
|
min=self.min_retry_seconds, # type: ignore[arg-type]
|
|
max=self.max_retry_seconds, # type: ignore[arg-type]
|
|
),
|
|
before_sleep=before_sleep_log(logger, logging.WARNING),
|
|
)(self.confluence.get_page_by_id)
|
|
page = get_page(
|
|
page_id=page_id, expand=f"{content_format.value},version"
|
|
)
|
|
if not include_restricted_content and not self.is_public_page(page):
|
|
continue
|
|
doc = self.process_page(
|
|
page,
|
|
include_attachments,
|
|
include_comments,
|
|
content_format,
|
|
ocr_languages,
|
|
keep_markdown_format,
|
|
)
|
|
docs.append(doc)
|
|
|
|
return docs
|
|
|
|
def _search_content_by_cql(
|
|
self, cql: str, include_archived_spaces: Optional[bool] = None, **kwargs: Any
|
|
) -> List[dict]:
|
|
url = "rest/api/content/search"
|
|
|
|
params: Dict[str, Any] = {"cql": cql}
|
|
params.update(kwargs)
|
|
if include_archived_spaces is not None:
|
|
params["includeArchivedSpaces"] = include_archived_spaces
|
|
|
|
response = self.confluence.get(url, params=params)
|
|
return response.get("results", [])
|
|
|
|
def paginate_request(self, retrieval_method: Callable, **kwargs: Any) -> List:
|
|
"""Paginate the various methods to retrieve groups of pages.
|
|
|
|
Unfortunately, due to page size, sometimes the Confluence API
|
|
doesn't match the limit value. If `limit` is >100 confluence
|
|
seems to cap the response to 100. Also, due to the Atlassian Python
|
|
package, we don't get the "next" values from the "_links" key because
|
|
they only return the value from the result key. So here, the pagination
|
|
starts from 0 and goes until the max_pages, getting the `limit` number
|
|
of pages with each request. We have to manually check if there
|
|
are more docs based on the length of the returned list of pages, rather than
|
|
just checking for the presence of a `next` key in the response like this page
|
|
would have you do:
|
|
https://developer.atlassian.com/server/confluence/pagination-in-the-rest-api/
|
|
|
|
:param retrieval_method: Function used to retrieve docs
|
|
:type retrieval_method: callable
|
|
:return: List of documents
|
|
:rtype: List
|
|
"""
|
|
|
|
max_pages = kwargs.pop("max_pages")
|
|
docs: List[dict] = []
|
|
while len(docs) < max_pages:
|
|
get_pages = retry(
|
|
reraise=True,
|
|
stop=stop_after_attempt(
|
|
self.number_of_retries # type: ignore[arg-type]
|
|
),
|
|
wait=wait_exponential(
|
|
multiplier=1,
|
|
min=self.min_retry_seconds, # type: ignore[arg-type]
|
|
max=self.max_retry_seconds, # type: ignore[arg-type]
|
|
),
|
|
before_sleep=before_sleep_log(logger, logging.WARNING),
|
|
)(retrieval_method)
|
|
batch = get_pages(**kwargs, start=len(docs))
|
|
if not batch:
|
|
break
|
|
docs.extend(batch)
|
|
return docs[:max_pages]
|
|
|
|
def is_public_page(self, page: dict) -> bool:
|
|
"""Check if a page is publicly accessible."""
|
|
restrictions = self.confluence.get_all_restrictions_for_content(page["id"])
|
|
|
|
return (
|
|
page["status"] == "current"
|
|
and not restrictions["read"]["restrictions"]["user"]["results"]
|
|
and not restrictions["read"]["restrictions"]["group"]["results"]
|
|
)
|
|
|
|
def process_pages(
|
|
self,
|
|
pages: List[dict],
|
|
include_restricted_content: bool,
|
|
include_attachments: bool,
|
|
include_comments: bool,
|
|
content_format: ContentFormat,
|
|
ocr_languages: Optional[str] = None,
|
|
keep_markdown_format: Optional[bool] = False,
|
|
keep_newlines: bool = False,
|
|
) -> List[Document]:
|
|
"""Process a list of pages into a list of documents."""
|
|
docs = []
|
|
for page in pages:
|
|
if not include_restricted_content and not self.is_public_page(page):
|
|
continue
|
|
doc = self.process_page(
|
|
page,
|
|
include_attachments,
|
|
include_comments,
|
|
content_format,
|
|
ocr_languages=ocr_languages,
|
|
keep_markdown_format=keep_markdown_format,
|
|
keep_newlines=keep_newlines,
|
|
)
|
|
docs.append(doc)
|
|
|
|
return docs
|
|
|
|
def process_page(
|
|
self,
|
|
page: dict,
|
|
include_attachments: bool,
|
|
include_comments: bool,
|
|
content_format: ContentFormat,
|
|
ocr_languages: Optional[str] = None,
|
|
keep_markdown_format: Optional[bool] = False,
|
|
keep_newlines: bool = False,
|
|
) -> Document:
|
|
if keep_markdown_format:
|
|
try:
|
|
from markdownify import markdownify
|
|
except ImportError:
|
|
raise ImportError(
|
|
"`markdownify` package not found, please run "
|
|
"`pip install markdownify`"
|
|
)
|
|
if include_comments or not keep_markdown_format:
|
|
try:
|
|
from bs4 import BeautifulSoup # type: ignore
|
|
except ImportError:
|
|
raise ImportError(
|
|
"`beautifulsoup4` package not found, please run "
|
|
"`pip install beautifulsoup4`"
|
|
)
|
|
if include_attachments:
|
|
attachment_texts = self.process_attachment(page["id"], ocr_languages)
|
|
else:
|
|
attachment_texts = []
|
|
|
|
content = content_format.get_content(page)
|
|
if keep_markdown_format:
|
|
# Use markdownify to keep the page Markdown style
|
|
text = markdownify(content, heading_style="ATX") + "".join(attachment_texts)
|
|
|
|
else:
|
|
if keep_newlines:
|
|
text = BeautifulSoup(
|
|
content.replace("</p>", "\n</p>").replace("<br />", "\n"), "lxml"
|
|
).get_text(" ") + "".join(attachment_texts)
|
|
else:
|
|
text = BeautifulSoup(content, "lxml").get_text(
|
|
" ", strip=True
|
|
) + "".join(attachment_texts)
|
|
|
|
if include_comments:
|
|
comments = self.confluence.get_page_comments(
|
|
page["id"], expand="body.view.value", depth="all"
|
|
)["results"]
|
|
comment_texts = [
|
|
BeautifulSoup(comment["body"]["view"]["value"], "lxml").get_text(
|
|
" ", strip=True
|
|
)
|
|
for comment in comments
|
|
]
|
|
text = text + "".join(comment_texts)
|
|
|
|
metadata = {
|
|
"title": page["title"],
|
|
"id": page["id"],
|
|
"source": self.base_url.strip("/") + page["_links"]["webui"],
|
|
}
|
|
|
|
if "version" in page and "when" in page["version"]:
|
|
metadata["when"] = page["version"]["when"]
|
|
|
|
return Document(
|
|
page_content=text,
|
|
metadata=metadata,
|
|
)
|
|
|
|
def process_attachment(
|
|
self,
|
|
page_id: str,
|
|
ocr_languages: Optional[str] = None,
|
|
) -> List[str]:
|
|
try:
|
|
from PIL import Image # noqa: F401
|
|
except ImportError:
|
|
raise ImportError(
|
|
"`Pillow` package not found, " "please run `pip install Pillow`"
|
|
)
|
|
|
|
# depending on setup you may also need to set the correct path for
|
|
# poppler and tesseract
|
|
attachments = self.confluence.get_attachments_from_content(page_id)["results"]
|
|
texts = []
|
|
for attachment in attachments:
|
|
media_type = attachment["metadata"]["mediaType"]
|
|
absolute_url = self.base_url + attachment["_links"]["download"]
|
|
title = attachment["title"]
|
|
try:
|
|
if media_type == "application/pdf":
|
|
text = title + self.process_pdf(absolute_url, ocr_languages)
|
|
elif (
|
|
media_type == "image/png"
|
|
or media_type == "image/jpg"
|
|
or media_type == "image/jpeg"
|
|
):
|
|
text = title + self.process_image(absolute_url, ocr_languages)
|
|
elif (
|
|
media_type == "application/vnd.openxmlformats-officedocument"
|
|
".wordprocessingml.document"
|
|
):
|
|
text = title + self.process_doc(absolute_url)
|
|
elif media_type == "application/vnd.ms-excel":
|
|
text = title + self.process_xls(absolute_url)
|
|
elif media_type == "image/svg+xml":
|
|
text = title + self.process_svg(absolute_url, ocr_languages)
|
|
else:
|
|
continue
|
|
texts.append(text)
|
|
except requests.HTTPError as e:
|
|
if e.response.status_code == 404:
|
|
print(f"Attachment not found at {absolute_url}")
|
|
continue
|
|
else:
|
|
raise
|
|
|
|
return texts
|
|
|
|
def process_pdf(
|
|
self,
|
|
link: str,
|
|
ocr_languages: Optional[str] = None,
|
|
) -> str:
|
|
try:
|
|
import pytesseract # noqa: F401
|
|
from pdf2image import convert_from_bytes # noqa: F401
|
|
except ImportError:
|
|
raise ImportError(
|
|
"`pytesseract` or `pdf2image` package not found, "
|
|
"please run `pip install pytesseract pdf2image`"
|
|
)
|
|
|
|
response = self.confluence.request(path=link, absolute=True)
|
|
text = ""
|
|
|
|
if (
|
|
response.status_code != 200
|
|
or response.content == b""
|
|
or response.content is None
|
|
):
|
|
return text
|
|
try:
|
|
images = convert_from_bytes(response.content)
|
|
except ValueError:
|
|
return text
|
|
|
|
for i, image in enumerate(images):
|
|
image_text = pytesseract.image_to_string(image, lang=ocr_languages)
|
|
text += f"Page {i + 1}:\n{image_text}\n\n"
|
|
|
|
return text
|
|
|
|
def process_image(
|
|
self,
|
|
link: str,
|
|
ocr_languages: Optional[str] = None,
|
|
) -> str:
|
|
try:
|
|
import pytesseract # noqa: F401
|
|
from PIL import Image # noqa: F401
|
|
except ImportError:
|
|
raise ImportError(
|
|
"`pytesseract` or `Pillow` package not found, "
|
|
"please run `pip install pytesseract Pillow`"
|
|
)
|
|
|
|
response = self.confluence.request(path=link, absolute=True)
|
|
text = ""
|
|
|
|
if (
|
|
response.status_code != 200
|
|
or response.content == b""
|
|
or response.content is None
|
|
):
|
|
return text
|
|
try:
|
|
image = Image.open(BytesIO(response.content))
|
|
except OSError:
|
|
return text
|
|
|
|
return pytesseract.image_to_string(image, lang=ocr_languages)
|
|
|
|
def process_doc(self, link: str) -> str:
|
|
try:
|
|
import docx2txt # noqa: F401
|
|
except ImportError:
|
|
raise ImportError(
|
|
"`docx2txt` package not found, please run `pip install docx2txt`"
|
|
)
|
|
|
|
response = self.confluence.request(path=link, absolute=True)
|
|
text = ""
|
|
|
|
if (
|
|
response.status_code != 200
|
|
or response.content == b""
|
|
or response.content is None
|
|
):
|
|
return text
|
|
file_data = BytesIO(response.content)
|
|
|
|
return docx2txt.process(file_data)
|
|
|
|
def process_xls(self, link: str) -> str:
|
|
import io
|
|
import os
|
|
|
|
try:
|
|
import xlrd # noqa: F401
|
|
|
|
except ImportError:
|
|
raise ImportError("`xlrd` package not found, please run `pip install xlrd`")
|
|
|
|
try:
|
|
import pandas as pd
|
|
|
|
except ImportError:
|
|
raise ImportError(
|
|
"`pandas` package not found, please run `pip install pandas`"
|
|
)
|
|
|
|
response = self.confluence.request(path=link, absolute=True)
|
|
text = ""
|
|
|
|
if (
|
|
response.status_code != 200
|
|
or response.content == b""
|
|
or response.content is None
|
|
):
|
|
return text
|
|
|
|
filename = os.path.basename(link)
|
|
# Getting the whole content of the url after filename,
|
|
# Example: ".csv?version=2&modificationDate=1631800010678&cacheVersion=1&api=v2"
|
|
file_extension = os.path.splitext(filename)[1]
|
|
|
|
if file_extension.startswith(
|
|
".csv"
|
|
): # if the extension found in the url is ".csv"
|
|
content_string = response.content.decode("utf-8")
|
|
df = pd.read_csv(io.StringIO(content_string))
|
|
text += df.to_string(index=False, header=False) + "\n\n"
|
|
else:
|
|
workbook = xlrd.open_workbook(file_contents=response.content)
|
|
for sheet in workbook.sheets():
|
|
text += f"{sheet.name}:\n"
|
|
for row in range(sheet.nrows):
|
|
for col in range(sheet.ncols):
|
|
text += f"{sheet.cell_value(row, col)}\t"
|
|
text += "\n"
|
|
text += "\n"
|
|
|
|
return text
|
|
|
|
def process_svg(
|
|
self,
|
|
link: str,
|
|
ocr_languages: Optional[str] = None,
|
|
) -> str:
|
|
try:
|
|
import pytesseract # noqa: F401
|
|
from PIL import Image # noqa: F401
|
|
from reportlab.graphics import renderPM # noqa: F401
|
|
from svglib.svglib import svg2rlg # noqa: F401
|
|
except ImportError:
|
|
raise ImportError(
|
|
"`pytesseract`, `Pillow`, `reportlab` or `svglib` package not found, "
|
|
"please run `pip install pytesseract Pillow reportlab svglib`"
|
|
)
|
|
|
|
response = self.confluence.request(path=link, absolute=True)
|
|
text = ""
|
|
|
|
if (
|
|
response.status_code != 200
|
|
or response.content == b""
|
|
or response.content is None
|
|
):
|
|
return text
|
|
|
|
drawing = svg2rlg(BytesIO(response.content))
|
|
|
|
img_data = BytesIO()
|
|
renderPM.drawToFile(drawing, img_data, fmt="PNG")
|
|
img_data.seek(0)
|
|
image = Image.open(img_data)
|
|
|
|
return pytesseract.image_to_string(image, lang=ocr_languages)
|