mirror of
https://github.com/hwchase17/langchain
synced 2024-11-08 07:10:35 +00:00
8dbbcf0b6c
**Description:** This template creates an agent that transforms a single LLM into a cognitive synergist by engaging in multi-turn self-collaboration with multiple personas. **Tag maintainer:** @hwchase17 --------- Co-authored-by: Sayandip Sarkar <sayandip.sarkar@skypointcloud.com> Co-authored-by: Erick Friis <erick@langchain.dev>
39 lines
1.1 KiB
Python
39 lines
1.1 KiB
Python
from langchain.agents import AgentExecutor
|
|
from langchain.agents.format_scratchpad import format_xml
|
|
from langchain.llms import OpenAI
|
|
from langchain.pydantic_v1 import BaseModel
|
|
from langchain.tools import DuckDuckGoSearchRun
|
|
from langchain.tools.render import render_text_description
|
|
|
|
from solo_performance_prompting_agent.parser import parse_output
|
|
from solo_performance_prompting_agent.prompts import conversational_prompt
|
|
|
|
_model = OpenAI()
|
|
_tools = [DuckDuckGoSearchRun()]
|
|
_prompt = conversational_prompt.partial(
|
|
tools=render_text_description(_tools),
|
|
tool_names=", ".join([t.name for t in _tools]),
|
|
)
|
|
_llm_with_stop = _model.bind(stop=["</tool_input>", "</final_answer>"])
|
|
|
|
agent = (
|
|
{
|
|
"question": lambda x: x["question"],
|
|
"agent_scratchpad": lambda x: format_xml(x["intermediate_steps"]),
|
|
}
|
|
| _prompt
|
|
| _llm_with_stop
|
|
| parse_output
|
|
)
|
|
|
|
|
|
class AgentInput(BaseModel):
|
|
question: str
|
|
|
|
|
|
agent_executor = AgentExecutor(
|
|
agent=agent, tools=_tools, verbose=True, handle_parsing_errors=True
|
|
).with_types(input_type=AgentInput)
|
|
|
|
agent_executor = agent_executor | (lambda x: x["output"])
|