Updated titles into a consistent format. Fixed links to the diagrams. Fixed typos. Note: The Templates menu in the navbar is now sorted by the file names. I'll try sorting the navbar menus by the page titles, not the page file names.
3.9 KiB
Self-query - Supabase
This template allows natural language structured querying of Supabase
.
Supabase is an open-source alternative to Firebase
, built on top of PostgreSQL.
It uses pgvector to store embeddings within your tables.
Environment Setup
Set the OPENAI_API_KEY
environment variable to access the OpenAI models.
To get your OPENAI_API_KEY
, navigate to API keys on your OpenAI account and create a new secret key.
To find your SUPABASE_URL
and SUPABASE_SERVICE_KEY
, head to your Supabase project's API settings.
SUPABASE_URL
corresponds to the Project URLSUPABASE_SERVICE_KEY
corresponds to theservice_role
API key
export SUPABASE_URL=
export SUPABASE_SERVICE_KEY=
export OPENAI_API_KEY=
Setup Supabase Database
Use these steps to setup your Supabase database if you haven't already.
-
Head over to https://database.new to provision your Supabase database.
-
In the studio, jump to the SQL editor and run the following script to enable
pgvector
and setup your database as a vector store:-- Enable the pgvector extension to work with embedding vectors create extension if not exists vector; -- Create a table to store your documents create table documents ( id uuid primary key, content text, -- corresponds to Document.pageContent metadata jsonb, -- corresponds to Document.metadata embedding vector (1536) -- 1536 works for OpenAI embeddings, change as needed ); -- Create a function to search for documents create function match_documents ( query_embedding vector (1536), filter jsonb default '{}' ) returns table ( id uuid, content text, metadata jsonb, similarity float ) language plpgsql as $$ #variable_conflict use_column begin return query select id, content, metadata, 1 - (documents.embedding <=> query_embedding) as similarity from documents where metadata @> filter order by documents.embedding <=> query_embedding; end; $$;
Usage
To use this package, install the LangChain CLI first:
pip install -U langchain-cli
Create a new LangChain project and install this package as the only one:
langchain app new my-app --package self-query-supabase
To add this to an existing project, run:
langchain app add self-query-supabase
Add the following code to your server.py
file:
from self_query_supabase.chain import chain as self_query_supabase_chain
add_routes(app, self_query_supabase_chain, path="/self-query-supabase")
(Optional) If you have access to LangSmith, configure it to help trace, monitor and debug LangChain applications. If you don't have access, skip this section.
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-api-key>
export LANGCHAIN_PROJECT=<your-project> # if not specified, defaults to "default"
If you are inside this directory, then you can spin up a LangServe instance directly by:
langchain serve
This will start the FastAPI app with a server running locally at http://localhost:8000
You can see all templates at http://127.0.0.1:8000/docs Access the playground at http://127.0.0.1:8000/self-query-supabase/playground
Access the template from code with:
from langserve.client import RemoteRunnable
runnable = RemoteRunnable("http://localhost:8000/self-query-supabase")
TODO: Instructions to set up the Supabase database and install the package.