mirror of
https://github.com/hwchase17/langchain
synced 2024-10-31 15:20:26 +00:00
43c4c6dfcc
Various improvements to the Model I/O section of the documentation - Changed "Chat Model" to "chat model" in a few spots for internal consistency - Minor spelling & grammar fixes to improve readability & comprehension
121 lines
3.5 KiB
Plaintext
121 lines
3.5 KiB
Plaintext
### Setup
|
|
|
|
To start we'll need to install the OpenAI Python package:
|
|
|
|
```bash
|
|
pip install openai
|
|
```
|
|
|
|
Accessing the API requires an API key, which you can get by creating an account and heading [here](https://platform.openai.com/account/api-keys). Once we have a key we'll want to set it as an environment variable by running:
|
|
|
|
```bash
|
|
export OPENAI_API_KEY="..."
|
|
```
|
|
If you'd prefer not to set an environment variable you can pass the key in directly via the `openai_api_key` named parameter when initiating the OpenAI LLM class:
|
|
|
|
```python
|
|
from langchain.chat_models import ChatOpenAI
|
|
|
|
chat = ChatOpenAI(openai_api_key="...")
|
|
```
|
|
|
|
Otherwise you can initialize without any params:
|
|
```python
|
|
from langchain.chat_models import ChatOpenAI
|
|
|
|
chat = ChatOpenAI()
|
|
```
|
|
|
|
### Messages
|
|
|
|
The chat model interface is based around messages rather than raw text.
|
|
The types of messages currently supported in LangChain are `AIMessage`, `HumanMessage`, `SystemMessage`, and `ChatMessage` -- `ChatMessage` takes in an arbitrary role parameter. Most of the time, you'll just be dealing with `HumanMessage`, `AIMessage`, and `SystemMessage`
|
|
|
|
### `__call__`
|
|
#### Messages in -> message out
|
|
|
|
You can get chat completions by passing one or more messages to the chat model. The response will be a message.
|
|
|
|
```python
|
|
from langchain.schema import (
|
|
AIMessage,
|
|
HumanMessage,
|
|
SystemMessage
|
|
)
|
|
|
|
chat([HumanMessage(content="Translate this sentence from English to French: I love programming.")])
|
|
```
|
|
|
|
<CodeOutputBlock lang="python">
|
|
|
|
```
|
|
AIMessage(content="J'aime programmer.", additional_kwargs={})
|
|
```
|
|
|
|
</CodeOutputBlock>
|
|
|
|
OpenAI's chat model supports multiple messages as input. See [here](https://platform.openai.com/docs/guides/chat/chat-vs-completions) for more information. Here is an example of sending a system and user message to the chat model:
|
|
|
|
|
|
```python
|
|
messages = [
|
|
SystemMessage(content="You are a helpful assistant that translates English to French."),
|
|
HumanMessage(content="I love programming.")
|
|
]
|
|
chat(messages)
|
|
```
|
|
|
|
<CodeOutputBlock lang="python">
|
|
|
|
```
|
|
AIMessage(content="J'aime programmer.", additional_kwargs={})
|
|
```
|
|
|
|
</CodeOutputBlock>
|
|
|
|
### `generate`
|
|
#### Batch calls, richer outputs
|
|
|
|
You can go one step further and generate completions for multiple sets of messages using `generate`. This returns an `LLMResult` with an additional `message` parameter.
|
|
|
|
```python
|
|
batch_messages = [
|
|
[
|
|
SystemMessage(content="You are a helpful assistant that translates English to French."),
|
|
HumanMessage(content="I love programming.")
|
|
],
|
|
[
|
|
SystemMessage(content="You are a helpful assistant that translates English to French."),
|
|
HumanMessage(content="I love artificial intelligence.")
|
|
],
|
|
]
|
|
result = chat.generate(batch_messages)
|
|
result
|
|
```
|
|
|
|
<CodeOutputBlock lang="python">
|
|
|
|
```
|
|
LLMResult(generations=[[ChatGeneration(text="J'aime programmer.", generation_info=None, message=AIMessage(content="J'aime programmer.", additional_kwargs={}))], [ChatGeneration(text="J'aime l'intelligence artificielle.", generation_info=None, message=AIMessage(content="J'aime l'intelligence artificielle.", additional_kwargs={}))]], llm_output={'token_usage': {'prompt_tokens': 57, 'completion_tokens': 20, 'total_tokens': 77}})
|
|
```
|
|
|
|
</CodeOutputBlock>
|
|
|
|
You can recover things like token usage from this LLMResult:
|
|
|
|
|
|
```python
|
|
result.llm_output
|
|
```
|
|
|
|
<CodeOutputBlock lang="python">
|
|
|
|
```
|
|
{'token_usage': {'prompt_tokens': 57,
|
|
'completion_tokens': 20,
|
|
'total_tokens': 77}}
|
|
```
|
|
|
|
</CodeOutputBlock>
|
|
|