langchain/templates/sql-research-assistant/sql_research_assistant/search/sql.py
2024-01-03 13:28:05 -08:00

94 lines
2.4 KiB
Python

from pathlib import Path
from langchain.memory import ConversationBufferMemory
from langchain.pydantic_v1 import BaseModel
from langchain_community.chat_models import ChatOllama, ChatOpenAI
from langchain_community.utilities import SQLDatabase
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
# Add the LLM downloaded from Ollama
ollama_llm = "llama2"
llm = ChatOllama(model=ollama_llm)
db_path = Path(__file__).parent / "nba_roster.db"
rel = db_path.relative_to(Path.cwd())
db_string = f"sqlite:///{rel}"
db = SQLDatabase.from_uri(db_string, sample_rows_in_table_info=2)
def get_schema(_):
return db.get_table_info()
def run_query(query):
return db.run(query)
# Prompt
template = """Based on the table schema below, write a SQL query that would answer the user's question:
{schema}
Question: {question}
SQL Query:""" # noqa: E501
prompt = ChatPromptTemplate.from_messages(
[
("system", "Given an input question, convert it to a SQL query. No pre-amble."),
("human", template),
]
)
memory = ConversationBufferMemory(return_messages=True)
# Chain to query with memory
sql_chain = (
RunnablePassthrough.assign(
schema=get_schema,
)
| prompt
| llm.bind(stop=["\nSQLResult:"])
| StrOutputParser()
| (lambda x: x.split("\n\n")[0])
)
# Chain to answer
template = """Based on the table schema below, question, sql query, and sql response, write a natural language response:
{schema}
Question: {question}
SQL Query: {query}
SQL Response: {response}""" # noqa: E501
prompt_response = ChatPromptTemplate.from_messages(
[
(
"system",
"Given an input question and SQL response, convert it to a natural "
"language answer. No pre-amble.",
),
("human", template),
]
)
# Supply the input types to the prompt
class InputType(BaseModel):
question: str
sql_answer_chain = (
RunnablePassthrough.assign(query=sql_chain).with_types(input_type=InputType)
| RunnablePassthrough.assign(
schema=get_schema,
response=lambda x: db.run(x["query"]),
)
| RunnablePassthrough.assign(
answer=prompt_response | ChatOpenAI() | StrOutputParser()
)
| (lambda x: f"Question: {x['question']}\n\nAnswer: {x['answer']}")
)