mirror of
https://github.com/hwchase17/langchain
synced 2024-11-08 07:10:35 +00:00
7cf2d2759d
Added missed docstrings. Format docstings to the consistent form.
213 lines
7.6 KiB
Python
213 lines
7.6 KiB
Python
"""[DEPRECATED]
|
|
|
|
## Zapier Natural Language Actions API
|
|
\
|
|
Full docs here: https://nla.zapier.com/start/
|
|
|
|
**Zapier Natural Language Actions** gives you access to the 5k+ apps, 20k+ actions
|
|
on Zapier's platform through a natural language API interface.
|
|
|
|
NLA supports apps like Gmail, Salesforce, Trello, Slack, Asana, HubSpot, Google Sheets,
|
|
Microsoft Teams, and thousands more apps: https://zapier.com/apps
|
|
|
|
Zapier NLA handles ALL the underlying API auth and translation from
|
|
natural language --> underlying API call --> return simplified output for LLMs
|
|
The key idea is you, or your users, expose a set of actions via an oauth-like setup
|
|
window, which you can then query and execute via a REST API.
|
|
|
|
NLA offers both API Key and OAuth for signing NLA API requests.
|
|
|
|
1. Server-side (API Key): for quickly getting started, testing, and production scenarios
|
|
where LangChain will only use actions exposed in the developer's Zapier account
|
|
(and will use the developer's connected accounts on Zapier.com)
|
|
|
|
2. User-facing (Oauth): for production scenarios where you are deploying an end-user
|
|
facing application and LangChain needs access to end-user's exposed actions and
|
|
connected accounts on Zapier.com
|
|
|
|
This quick start will focus on the server-side use case for brevity.
|
|
Review [full docs](https://nla.zapier.com/start/) for user-facing oauth developer
|
|
support.
|
|
|
|
Typically, you'd use SequentialChain, here's a basic example:
|
|
|
|
1. Use NLA to find an email in Gmail
|
|
2. Use LLMChain to generate a draft reply to (1)
|
|
3. Use NLA to send the draft reply (2) to someone in Slack via direct message
|
|
|
|
In code, below:
|
|
|
|
```python
|
|
|
|
import os
|
|
|
|
# get from https://platform.openai.com/
|
|
os.environ["OPENAI_API_KEY"] = os.environ.get("OPENAI_API_KEY", "")
|
|
|
|
# get from https://nla.zapier.com/docs/authentication/
|
|
os.environ["ZAPIER_NLA_API_KEY"] = os.environ.get("ZAPIER_NLA_API_KEY", "")
|
|
|
|
from langchain_community.agent_toolkits import ZapierToolkit
|
|
from langchain_community.utilities.zapier import ZapierNLAWrapper
|
|
|
|
## step 0. expose gmail 'find email' and slack 'send channel message' actions
|
|
|
|
# first go here, log in, expose (enable) the two actions:
|
|
# https://nla.zapier.com/demo/start
|
|
# -- for this example, can leave all fields "Have AI guess"
|
|
# in an oauth scenario, you'd get your own <provider> id (instead of 'demo')
|
|
# which you route your users through first
|
|
|
|
zapier = ZapierNLAWrapper()
|
|
## To leverage OAuth you may pass the value `nla_oauth_access_token` to
|
|
## the ZapierNLAWrapper. If you do this there is no need to initialize
|
|
## the ZAPIER_NLA_API_KEY env variable
|
|
# zapier = ZapierNLAWrapper(zapier_nla_oauth_access_token="TOKEN_HERE")
|
|
toolkit = ZapierToolkit.from_zapier_nla_wrapper(zapier)
|
|
```
|
|
|
|
"""
|
|
from typing import Any, Dict, Optional
|
|
|
|
from langchain_core._api import warn_deprecated
|
|
from langchain_core.callbacks import (
|
|
AsyncCallbackManagerForToolRun,
|
|
CallbackManagerForToolRun,
|
|
)
|
|
from langchain_core.pydantic_v1 import Field, root_validator
|
|
from langchain_core.tools import BaseTool
|
|
|
|
from langchain_community.tools.zapier.prompt import BASE_ZAPIER_TOOL_PROMPT
|
|
from langchain_community.utilities.zapier import ZapierNLAWrapper
|
|
|
|
|
|
class ZapierNLARunAction(BaseTool):
|
|
"""Tool to run a specific action from the user's exposed actions.
|
|
|
|
Params:
|
|
action_id: a specific action ID (from list actions) of the action to execute
|
|
(the set api_key must be associated with the action owner)
|
|
instructions: a natural language instruction string for using the action
|
|
(eg. "get the latest email from Mike Knoop" for "Gmail: find email" action)
|
|
params: a dict, optional. Any params provided will *override* AI guesses
|
|
from `instructions` (see "understanding the AI guessing flow" here:
|
|
https://nla.zapier.com/docs/using-the-api#ai-guessing)
|
|
|
|
"""
|
|
|
|
api_wrapper: ZapierNLAWrapper = Field(default_factory=ZapierNLAWrapper)
|
|
action_id: str
|
|
params: Optional[dict] = None
|
|
base_prompt: str = BASE_ZAPIER_TOOL_PROMPT
|
|
zapier_description: str
|
|
params_schema: Dict[str, str] = Field(default_factory=dict)
|
|
name: str = ""
|
|
description: str = ""
|
|
|
|
@root_validator
|
|
def set_name_description(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
|
zapier_description = values["zapier_description"]
|
|
params_schema = values["params_schema"]
|
|
if "instructions" in params_schema:
|
|
del params_schema["instructions"]
|
|
|
|
# Ensure base prompt (if overridden) contains necessary input fields
|
|
necessary_fields = {"{zapier_description}", "{params}"}
|
|
if not all(field in values["base_prompt"] for field in necessary_fields):
|
|
raise ValueError(
|
|
"Your custom base Zapier prompt must contain input fields for "
|
|
"{zapier_description} and {params}."
|
|
)
|
|
|
|
values["name"] = zapier_description
|
|
values["description"] = values["base_prompt"].format(
|
|
zapier_description=zapier_description,
|
|
params=str(list(params_schema.keys())),
|
|
)
|
|
return values
|
|
|
|
def _run(
|
|
self, instructions: str, run_manager: Optional[CallbackManagerForToolRun] = None
|
|
) -> str:
|
|
"""Use the Zapier NLA tool to return a list of all exposed user actions."""
|
|
warn_deprecated(
|
|
since="0.0.319",
|
|
message=(
|
|
"This tool will be deprecated on 2023-11-17. See "
|
|
"https://nla.zapier.com/sunset/ for details"
|
|
),
|
|
)
|
|
return self.api_wrapper.run_as_str(self.action_id, instructions, self.params)
|
|
|
|
async def _arun(
|
|
self,
|
|
instructions: str,
|
|
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
|
|
) -> str:
|
|
"""Use the Zapier NLA tool to return a list of all exposed user actions."""
|
|
warn_deprecated(
|
|
since="0.0.319",
|
|
message=(
|
|
"This tool will be deprecated on 2023-11-17. See "
|
|
"https://nla.zapier.com/sunset/ for details"
|
|
),
|
|
)
|
|
return await self.api_wrapper.arun_as_str(
|
|
self.action_id,
|
|
instructions,
|
|
self.params,
|
|
)
|
|
|
|
|
|
ZapierNLARunAction.__doc__ = (
|
|
ZapierNLAWrapper.run.__doc__ + ZapierNLARunAction.__doc__ # type: ignore
|
|
)
|
|
|
|
|
|
# other useful actions
|
|
|
|
|
|
class ZapierNLAListActions(BaseTool):
|
|
"""Tool to list all exposed actions for the user."""
|
|
|
|
name: str = "ZapierNLA_list_actions"
|
|
description: str = BASE_ZAPIER_TOOL_PROMPT + (
|
|
"This tool returns a list of the user's exposed actions."
|
|
)
|
|
api_wrapper: ZapierNLAWrapper = Field(default_factory=ZapierNLAWrapper)
|
|
|
|
def _run(
|
|
self,
|
|
_: str = "",
|
|
run_manager: Optional[CallbackManagerForToolRun] = None,
|
|
) -> str:
|
|
"""Use the Zapier NLA tool to return a list of all exposed user actions."""
|
|
warn_deprecated(
|
|
since="0.0.319",
|
|
message=(
|
|
"This tool will be deprecated on 2023-11-17. See "
|
|
"https://nla.zapier.com/sunset/ for details"
|
|
),
|
|
)
|
|
return self.api_wrapper.list_as_str()
|
|
|
|
async def _arun(
|
|
self,
|
|
_: str = "",
|
|
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
|
|
) -> str:
|
|
"""Use the Zapier NLA tool to return a list of all exposed user actions."""
|
|
warn_deprecated(
|
|
since="0.0.319",
|
|
message=(
|
|
"This tool will be deprecated on 2023-11-17. See "
|
|
"https://nla.zapier.com/sunset/ for details"
|
|
),
|
|
)
|
|
return await self.api_wrapper.alist_as_str()
|
|
|
|
|
|
ZapierNLAListActions.__doc__ = (
|
|
ZapierNLAWrapper.list.__doc__ + ZapierNLAListActions.__doc__ # type: ignore
|
|
)
|