langchain/libs/community/langchain_community/llms/predibase.py

115 lines
4.2 KiB
Python

from typing import Any, Dict, List, Mapping, Optional, Union
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM
from langchain_core.pydantic_v1 import Field, SecretStr
class Predibase(LLM):
"""Use your Predibase models with Langchain.
To use, you should have the ``predibase`` python package installed,
and have your Predibase API key.
The `model` parameter is the Predibase "serverless" base_model ID
(see https://docs.predibase.com/user-guide/inference/models for the catalog).
An optional `adapter_id` parameter is the Predibase ID or HuggingFace ID of a
fine-tuned LLM adapter, whose base model is the `model` parameter; the
fine-tuned adapter must be compatible with its base model;
otherwise, an error is raised. If a Predibase ID references the
fine-tuned adapter, then the `adapter_version` in the adapter repository can
be optionally specified; omitting it defaults to the most recent version.
"""
model: str
predibase_api_key: SecretStr
adapter_id: Optional[str] = None
adapter_version: Optional[int] = None
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
default_options_for_generation: dict = Field(
{
"max_new_tokens": 256,
"temperature": 0.1,
},
const=True,
)
@property
def _llm_type(self) -> str:
return "predibase"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
try:
from predibase import PredibaseClient
from predibase.pql import get_session
from predibase.pql.api import (
ServerResponseError,
Session,
)
from predibase.resource.llm.interface import (
HuggingFaceLLM,
LLMDeployment,
)
from predibase.resource.llm.response import GeneratedResponse
from predibase.resource.model import Model
session: Session = get_session(
token=self.predibase_api_key.get_secret_value(),
gateway="https://api.app.predibase.com/v1",
serving_endpoint="serving.app.predibase.com",
)
pc: PredibaseClient = PredibaseClient(session=session)
except ImportError as e:
raise ImportError(
"Could not import Predibase Python package. "
"Please install it with `pip install predibase`."
) from e
except ValueError as e:
raise ValueError("Your API key is not correct. Please try again") from e
options: Dict[str, Union[str, float]] = (
self.model_kwargs or self.default_options_for_generation
)
base_llm_deployment: LLMDeployment = pc.LLM(
uri=f"pb://deployments/{self.model}"
)
result: GeneratedResponse
if self.adapter_id:
"""
Attempt to retrieve the fine-tuned adapter from a Predibase repository.
If absent, then load the fine-tuned adapter from a HuggingFace repository.
"""
adapter_model: Union[Model, HuggingFaceLLM]
try:
adapter_model = pc.get_model(
name=self.adapter_id,
version=self.adapter_version,
model_id=None,
)
except ServerResponseError:
# Predibase does not recognize the adapter ID (query HuggingFace).
adapter_model = pc.LLM(uri=f"hf://{self.adapter_id}")
result = base_llm_deployment.with_adapter(model=adapter_model).generate(
prompt=prompt,
options=options,
)
else:
result = base_llm_deployment.generate(
prompt=prompt,
options=options,
)
return result.response
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {
**{"model_kwargs": self.model_kwargs},
}