langchain/libs/community/langchain_community/document_loaders/notebook.py
Paulo Nascimento 44a3484503
community[patch]: add NotebookLoader unit test (#17721)
Thank you for contributing to LangChain!

- **Description:** added unit tests for NotebookLoader. Linked PR:
https://github.com/langchain-ai/langchain/pull/17614
- **Issue:**
[#17614](https://github.com/langchain-ai/langchain/pull/17614)
    - **Twitter handle:** @paulodoestech
- [x] Pass lint and test: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified to check that you're
passing lint and testing. See contribution guidelines for more
information on how to write/run tests, lint, etc:
https://python.langchain.com/docs/contributing/
- [x] Add tests and docs: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.

---------

Co-authored-by: lachiewalker <lachiewalker1@hotmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-29 00:27:46 +00:00

137 lines
4.2 KiB
Python

"""Loads .ipynb notebook files."""
import json
from pathlib import Path
from typing import Any, List, Union
from langchain_core.documents import Document
from langchain_community.document_loaders.base import BaseLoader
def concatenate_cells(
cell: dict, include_outputs: bool, max_output_length: int, traceback: bool
) -> str:
"""Combine cells information in a readable format ready to be used.
Args:
cell: A dictionary
include_outputs: Whether to include the outputs of the cell.
max_output_length: Maximum length of the output to be displayed.
traceback: Whether to return a traceback of the error.
Returns:
A string with the cell information.
"""
cell_type = cell["cell_type"]
source = cell["source"]
if include_outputs:
try:
output = cell["outputs"]
except KeyError:
pass
if include_outputs and cell_type == "code" and output:
if "ename" in output[0].keys():
error_name = output[0]["ename"]
error_value = output[0]["evalue"]
if traceback:
traceback = output[0]["traceback"]
return (
f"'{cell_type}' cell: '{source}'\n, gives error '{error_name}',"
f" with description '{error_value}'\n"
f"and traceback '{traceback}'\n\n"
)
else:
return (
f"'{cell_type}' cell: '{source}'\n, gives error '{error_name}',"
f"with description '{error_value}'\n\n"
)
elif output[0]["output_type"] == "stream":
output = output[0]["text"]
min_output = min(max_output_length, len(output))
return (
f"'{cell_type}' cell: '{source}'\n with "
f"output: '{output[:min_output]}'\n\n"
)
else:
return f"'{cell_type}' cell: '{source}'\n\n"
return ""
def remove_newlines(x: Any) -> Any:
"""Recursively remove newlines, no matter the data structure they are stored in."""
if isinstance(x, str):
return x.replace("\n", "")
elif isinstance(x, list):
return [remove_newlines(elem) for elem in x]
elif isinstance(x, dict):
return {k: remove_newlines(v) for (k, v) in x.items()}
else:
return x
class NotebookLoader(BaseLoader):
"""Load `Jupyter notebook` (.ipynb) files."""
def __init__(
self,
path: Union[str, Path],
include_outputs: bool = False,
max_output_length: int = 10,
remove_newline: bool = False,
traceback: bool = False,
):
"""Initialize with a path.
Args:
path: The path to load the notebook from.
include_outputs: Whether to include the outputs of the cell.
Defaults to False.
max_output_length: Maximum length of the output to be displayed.
Defaults to 10.
remove_newline: Whether to remove newlines from the notebook.
Defaults to False.
traceback: Whether to return a traceback of the error.
Defaults to False.
"""
self.file_path = path
self.include_outputs = include_outputs
self.max_output_length = max_output_length
self.remove_newline = remove_newline
self.traceback = traceback
def load(
self,
) -> List[Document]:
"""Load documents."""
p = Path(self.file_path)
with open(p, encoding="utf8") as f:
d = json.load(f)
filtered_data = [
{k: v for (k, v) in cell.items() if k in ["cell_type", "source", "outputs"]}
for cell in d["cells"]
]
if self.remove_newline:
filtered_data = list(map(remove_newlines, filtered_data))
text = "".join(
list(
map(
lambda x: concatenate_cells(
x, self.include_outputs, self.max_output_length, self.traceback
),
filtered_data,
)
)
)
metadata = {"source": str(p)}
return [Document(page_content=text, metadata=metadata)]