langchain/libs/community/langchain_community/callbacks/aim_callback.py
Mohammad Mohtashim 43db4cd20e
core[major]: On Tool End Observation Casting Fix (#18798)
This PR updates the on_tool_end handlers to return the raw output from the tool instead of casting it to a string. 

This is technically a breaking change, though it's impact is expected to be somewhat minimal. It will fix behavior in `astream_events` as well.

Fixes the following issue #18760 raised by @eyurtsev

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-03-11 10:59:04 -04:00

442 lines
14 KiB
Python

from copy import deepcopy
from typing import Any, Dict, List, Optional
from langchain_core.agents import AgentAction, AgentFinish
from langchain_core.callbacks import BaseCallbackHandler
from langchain_core.outputs import LLMResult
def import_aim() -> Any:
"""Import the aim python package and raise an error if it is not installed."""
try:
import aim
except ImportError:
raise ImportError(
"To use the Aim callback manager you need to have the"
" `aim` python package installed."
"Please install it with `pip install aim`"
)
return aim
class BaseMetadataCallbackHandler:
"""This class handles the metadata and associated function states for callbacks.
Attributes:
step (int): The current step.
starts (int): The number of times the start method has been called.
ends (int): The number of times the end method has been called.
errors (int): The number of times the error method has been called.
text_ctr (int): The number of times the text method has been called.
ignore_llm_ (bool): Whether to ignore llm callbacks.
ignore_chain_ (bool): Whether to ignore chain callbacks.
ignore_agent_ (bool): Whether to ignore agent callbacks.
ignore_retriever_ (bool): Whether to ignore retriever callbacks.
always_verbose_ (bool): Whether to always be verbose.
chain_starts (int): The number of times the chain start method has been called.
chain_ends (int): The number of times the chain end method has been called.
llm_starts (int): The number of times the llm start method has been called.
llm_ends (int): The number of times the llm end method has been called.
llm_streams (int): The number of times the text method has been called.
tool_starts (int): The number of times the tool start method has been called.
tool_ends (int): The number of times the tool end method has been called.
agent_ends (int): The number of times the agent end method has been called.
"""
def __init__(self) -> None:
self.step = 0
self.starts = 0
self.ends = 0
self.errors = 0
self.text_ctr = 0
self.ignore_llm_ = False
self.ignore_chain_ = False
self.ignore_agent_ = False
self.ignore_retriever_ = False
self.always_verbose_ = False
self.chain_starts = 0
self.chain_ends = 0
self.llm_starts = 0
self.llm_ends = 0
self.llm_streams = 0
self.tool_starts = 0
self.tool_ends = 0
self.agent_ends = 0
@property
def always_verbose(self) -> bool:
"""Whether to call verbose callbacks even if verbose is False."""
return self.always_verbose_
@property
def ignore_llm(self) -> bool:
"""Whether to ignore LLM callbacks."""
return self.ignore_llm_
@property
def ignore_chain(self) -> bool:
"""Whether to ignore chain callbacks."""
return self.ignore_chain_
@property
def ignore_agent(self) -> bool:
"""Whether to ignore agent callbacks."""
return self.ignore_agent_
@property
def ignore_retriever(self) -> bool:
"""Whether to ignore retriever callbacks."""
return self.ignore_retriever_
def get_custom_callback_meta(self) -> Dict[str, Any]:
return {
"step": self.step,
"starts": self.starts,
"ends": self.ends,
"errors": self.errors,
"text_ctr": self.text_ctr,
"chain_starts": self.chain_starts,
"chain_ends": self.chain_ends,
"llm_starts": self.llm_starts,
"llm_ends": self.llm_ends,
"llm_streams": self.llm_streams,
"tool_starts": self.tool_starts,
"tool_ends": self.tool_ends,
"agent_ends": self.agent_ends,
}
def reset_callback_meta(self) -> None:
"""Reset the callback metadata."""
self.step = 0
self.starts = 0
self.ends = 0
self.errors = 0
self.text_ctr = 0
self.ignore_llm_ = False
self.ignore_chain_ = False
self.ignore_agent_ = False
self.always_verbose_ = False
self.chain_starts = 0
self.chain_ends = 0
self.llm_starts = 0
self.llm_ends = 0
self.llm_streams = 0
self.tool_starts = 0
self.tool_ends = 0
self.agent_ends = 0
return None
class AimCallbackHandler(BaseMetadataCallbackHandler, BaseCallbackHandler):
"""Callback Handler that logs to Aim.
Parameters:
repo (:obj:`str`, optional): Aim repository path or Repo object to which
Run object is bound. If skipped, default Repo is used.
experiment_name (:obj:`str`, optional): Sets Run's `experiment` property.
'default' if not specified. Can be used later to query runs/sequences.
system_tracking_interval (:obj:`int`, optional): Sets the tracking interval
in seconds for system usage metrics (CPU, Memory, etc.). Set to `None`
to disable system metrics tracking.
log_system_params (:obj:`bool`, optional): Enable/Disable logging of system
params such as installed packages, git info, environment variables, etc.
This handler will utilize the associated callback method called and formats
the input of each callback function with metadata regarding the state of LLM run
and then logs the response to Aim.
"""
def __init__(
self,
repo: Optional[str] = None,
experiment_name: Optional[str] = None,
system_tracking_interval: Optional[int] = 10,
log_system_params: bool = True,
) -> None:
"""Initialize callback handler."""
super().__init__()
aim = import_aim()
self.repo = repo
self.experiment_name = experiment_name
self.system_tracking_interval = system_tracking_interval
self.log_system_params = log_system_params
self._run = aim.Run(
repo=self.repo,
experiment=self.experiment_name,
system_tracking_interval=self.system_tracking_interval,
log_system_params=self.log_system_params,
)
self._run_hash = self._run.hash
self.action_records: list = []
def setup(self, **kwargs: Any) -> None:
aim = import_aim()
if not self._run:
if self._run_hash:
self._run = aim.Run(
self._run_hash,
repo=self.repo,
system_tracking_interval=self.system_tracking_interval,
)
else:
self._run = aim.Run(
repo=self.repo,
experiment=self.experiment_name,
system_tracking_interval=self.system_tracking_interval,
log_system_params=self.log_system_params,
)
self._run_hash = self._run.hash
if kwargs:
for key, value in kwargs.items():
self._run.set(key, value, strict=False)
def on_llm_start(
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
) -> None:
"""Run when LLM starts."""
aim = import_aim()
self.step += 1
self.llm_starts += 1
self.starts += 1
resp = {"action": "on_llm_start"}
resp.update(self.get_custom_callback_meta())
prompts_res = deepcopy(prompts)
self._run.track(
[aim.Text(prompt) for prompt in prompts_res],
name="on_llm_start",
context=resp,
)
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
"""Run when LLM ends running."""
aim = import_aim()
self.step += 1
self.llm_ends += 1
self.ends += 1
resp = {"action": "on_llm_end"}
resp.update(self.get_custom_callback_meta())
response_res = deepcopy(response)
generated = [
aim.Text(generation.text)
for generations in response_res.generations
for generation in generations
]
self._run.track(
generated,
name="on_llm_end",
context=resp,
)
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
"""Run when LLM generates a new token."""
self.step += 1
self.llm_streams += 1
def on_llm_error(self, error: BaseException, **kwargs: Any) -> None:
"""Run when LLM errors."""
self.step += 1
self.errors += 1
def on_chain_start(
self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any
) -> None:
"""Run when chain starts running."""
aim = import_aim()
self.step += 1
self.chain_starts += 1
self.starts += 1
resp = {"action": "on_chain_start"}
resp.update(self.get_custom_callback_meta())
inputs_res = deepcopy(inputs)
self._run.track(
aim.Text(inputs_res["input"]), name="on_chain_start", context=resp
)
def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None:
"""Run when chain ends running."""
aim = import_aim()
self.step += 1
self.chain_ends += 1
self.ends += 1
resp = {"action": "on_chain_end"}
resp.update(self.get_custom_callback_meta())
outputs_res = deepcopy(outputs)
self._run.track(
aim.Text(outputs_res["output"]), name="on_chain_end", context=resp
)
def on_chain_error(self, error: BaseException, **kwargs: Any) -> None:
"""Run when chain errors."""
self.step += 1
self.errors += 1
def on_tool_start(
self, serialized: Dict[str, Any], input_str: str, **kwargs: Any
) -> None:
"""Run when tool starts running."""
aim = import_aim()
self.step += 1
self.tool_starts += 1
self.starts += 1
resp = {"action": "on_tool_start"}
resp.update(self.get_custom_callback_meta())
self._run.track(aim.Text(input_str), name="on_tool_start", context=resp)
def on_tool_end(self, output: Any, **kwargs: Any) -> None:
"""Run when tool ends running."""
output = str(output)
aim = import_aim()
self.step += 1
self.tool_ends += 1
self.ends += 1
resp = {"action": "on_tool_end"}
resp.update(self.get_custom_callback_meta())
self._run.track(aim.Text(output), name="on_tool_end", context=resp)
def on_tool_error(self, error: BaseException, **kwargs: Any) -> None:
"""Run when tool errors."""
self.step += 1
self.errors += 1
def on_text(self, text: str, **kwargs: Any) -> None:
"""
Run when agent is ending.
"""
self.step += 1
self.text_ctr += 1
def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> None:
"""Run when agent ends running."""
aim = import_aim()
self.step += 1
self.agent_ends += 1
self.ends += 1
resp = {"action": "on_agent_finish"}
resp.update(self.get_custom_callback_meta())
finish_res = deepcopy(finish)
text = "OUTPUT:\n{}\n\nLOG:\n{}".format(
finish_res.return_values["output"], finish_res.log
)
self._run.track(aim.Text(text), name="on_agent_finish", context=resp)
def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any:
"""Run on agent action."""
aim = import_aim()
self.step += 1
self.tool_starts += 1
self.starts += 1
resp = {
"action": "on_agent_action",
"tool": action.tool,
}
resp.update(self.get_custom_callback_meta())
action_res = deepcopy(action)
text = "TOOL INPUT:\n{}\n\nLOG:\n{}".format(
action_res.tool_input, action_res.log
)
self._run.track(aim.Text(text), name="on_agent_action", context=resp)
def flush_tracker(
self,
repo: Optional[str] = None,
experiment_name: Optional[str] = None,
system_tracking_interval: Optional[int] = 10,
log_system_params: bool = True,
langchain_asset: Any = None,
reset: bool = True,
finish: bool = False,
) -> None:
"""Flush the tracker and reset the session.
Args:
repo (:obj:`str`, optional): Aim repository path or Repo object to which
Run object is bound. If skipped, default Repo is used.
experiment_name (:obj:`str`, optional): Sets Run's `experiment` property.
'default' if not specified. Can be used later to query runs/sequences.
system_tracking_interval (:obj:`int`, optional): Sets the tracking interval
in seconds for system usage metrics (CPU, Memory, etc.). Set to `None`
to disable system metrics tracking.
log_system_params (:obj:`bool`, optional): Enable/Disable logging of system
params such as installed packages, git info, environment variables, etc.
langchain_asset: The langchain asset to save.
reset: Whether to reset the session.
finish: Whether to finish the run.
Returns:
None
"""
if langchain_asset:
try:
for key, value in langchain_asset.dict().items():
self._run.set(key, value, strict=False)
except Exception:
pass
if finish or reset:
self._run.close()
self.reset_callback_meta()
if reset:
aim = import_aim()
self.repo = repo if repo else self.repo
self.experiment_name = (
experiment_name if experiment_name else self.experiment_name
)
self.system_tracking_interval = (
system_tracking_interval
if system_tracking_interval
else self.system_tracking_interval
)
self.log_system_params = (
log_system_params if log_system_params else self.log_system_params
)
self._run = aim.Run(
repo=self.repo,
experiment=self.experiment_name,
system_tracking_interval=self.system_tracking_interval,
log_system_params=self.log_system_params,
)
self._run_hash = self._run.hash
self.action_records = []