langchain/docs/extras/integrations/providers/deepsparse.mdx
Michael Goin 621da3c164
Adds DeepSparse as an LLM (#9184)
Adds [DeepSparse](https://github.com/neuralmagic/deepsparse) as an LLM
backend. DeepSparse supports running various open-source sparsified
models hosted on [SparseZoo](https://sparsezoo.neuralmagic.com/) for
performance gains on CPUs.

Twitter handles: @mgoin_ @neuralmagic


---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-13 22:35:58 -07:00

36 lines
1.2 KiB
Plaintext

# DeepSparse
This page covers how to use the [DeepSparse](https://github.com/neuralmagic/deepsparse) inference runtime within LangChain.
It is broken into two parts: installation and setup, and then examples of DeepSparse usage.
## Installation and Setup
- Install the Python package with `pip install deepsparse`
- Choose a [SparseZoo model](https://sparsezoo.neuralmagic.com/?useCase=text_generation) or export a support model to ONNX [using Optimum](https://github.com/neuralmagic/notebooks/blob/main/notebooks/opt-text-generation-deepsparse-quickstart/OPT_Text_Generation_DeepSparse_Quickstart.ipynb)
## Wrappers
### LLM
There exists a DeepSparse LLM wrapper, which you can access with:
```python
from langchain.llms import DeepSparse
```
It provides a unified interface for all models:
```python
llm = DeepSparse(model='zoo:nlg/text_generation/codegen_mono-350m/pytorch/huggingface/bigpython_bigquery_thepile/base-none')
print(llm('def fib():'))
```
Additional parameters can be passed using the `config` parameter:
```python
config = {'max_generated_tokens': 256}
llm = DeepSparse(model='zoo:nlg/text_generation/codegen_mono-350m/pytorch/huggingface/bigpython_bigquery_thepile/base-none', config=config)
```