langchain/templates/neo4j-advanced-rag/ingest.py
Tomaz Bratanic 0dbdb8498a
Neo4j Advanced RAG template (#12794)
Todo:

- [x] Docs
2023-11-03 13:22:55 -07:00

204 lines
5.8 KiB
Python

from pathlib import Path
from typing import List
from langchain.chains.openai_functions import create_structured_output_chain
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import TextLoader
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.graphs import Neo4jGraph
from langchain.prompts import ChatPromptTemplate
from langchain.pydantic_v1 import BaseModel, Field
from langchain.text_splitter import TokenTextSplitter
from neo4j.exceptions import ClientError
txt_path = Path(__file__).parent / "dune.txt"
graph = Neo4jGraph()
# Embeddings & LLM models
embeddings = OpenAIEmbeddings()
embedding_dimension = 1536
llm = ChatOpenAI(temperature=0)
# Load the text file
loader = TextLoader(str(txt_path))
documents = loader.load()
# Ingest Parent-Child node pairs
parent_splitter = TokenTextSplitter(chunk_size=512, chunk_overlap=24)
child_splitter = TokenTextSplitter(chunk_size=100, chunk_overlap=24)
parent_documents = parent_splitter.split_documents(documents)
for i, parent in enumerate(parent_documents):
child_documents = child_splitter.split_documents([parent])
params = {
"parent_text": parent.page_content,
"parent_id": i,
"parent_embedding": embeddings.embed_query(parent.page_content),
"children": [
{
"text": c.page_content,
"id": f"{i}-{ic}",
"embedding": embeddings.embed_query(c.page_content),
}
for ic, c in enumerate(child_documents)
],
}
# Ingest data
graph.query(
"""
MERGE (p:Parent {id: $parent_id})
SET p.text = $parent_text
WITH p
CALL db.create.setVectorProperty(p, 'embedding', $parent_embedding)
YIELD node
WITH p
UNWIND $children AS child
MERGE (c:Child {id: child.id})
SET c.text = child.text
MERGE (c)<-[:HAS_CHILD]-(p)
WITH c, child
CALL db.create.setVectorProperty(c, 'embedding', child.embedding)
YIELD node
RETURN count(*)
""",
params,
)
# Create vector index for child
try:
graph.query(
"CALL db.index.vector.createNodeIndex('parent_document', "
"'Child', 'embedding', $dimension, 'cosine')",
{"dimension": embedding_dimension},
)
except ClientError: # already exists
pass
# Create vector index for parents
try:
graph.query(
"CALL db.index.vector.createNodeIndex('typical_rag', "
"'Parent', 'embedding', $dimension, 'cosine')",
{"dimension": embedding_dimension},
)
except ClientError: # already exists
pass
# Ingest hypothethical questions
class Questions(BaseModel):
"""Generating hypothetical questions about text."""
questions: List[str] = Field(
...,
description=(
"Generated hypothetical questions based on " "the information from the text"
),
)
questions_prompt = ChatPromptTemplate.from_messages(
[
(
"system",
(
"You are generating hypothetical questions based on the information "
"found in the text. Make sure to provide full context in the generated "
"questions."
),
),
(
"human",
(
"Use the given format to generate hypothetical questions from the "
"following input: {input}"
),
),
]
)
question_chain = create_structured_output_chain(Questions, llm, questions_prompt)
for i, parent in enumerate(parent_documents):
questions = question_chain.run(parent.page_content).questions
params = {
"parent_id": i,
"questions": [
{"text": q, "id": f"{i}-{iq}", "embedding": embeddings.embed_query(q)}
for iq, q in enumerate(questions)
if q
],
}
graph.query(
"""
MERGE (p:Parent {id: $parent_id})
WITH p
UNWIND $questions AS question
CREATE (q:Question {id: question.id})
SET q.text = question.text
MERGE (q)<-[:HAS_QUESTION]-(p)
WITH q, question
CALL db.create.setVectorProperty(q, 'embedding', question.embedding)
YIELD node
RETURN count(*)
""",
params,
)
# Create vector index
try:
graph.query(
"CALL db.index.vector.createNodeIndex('hypothetical_questions', "
"'Question', 'embedding', $dimension, 'cosine')",
{"dimension": embedding_dimension},
)
except ClientError: # already exists
pass
# Ingest summaries
summary_prompt = ChatPromptTemplate.from_messages(
[
(
"system",
(
"You are generating concise and accurate summaries based on the "
"information found in the text."
),
),
(
"human",
("Generate a summary of the following input: {question}\n" "Summary:"),
),
]
)
summary_chain = summary_prompt | llm
for i, parent in enumerate(parent_documents):
summary = summary_chain.invoke({"question": parent.page_content}).content
params = {
"parent_id": i,
"summary": summary,
"embedding": embeddings.embed_query(summary),
}
graph.query(
"""
MERGE (p:Parent {id: $parent_id})
MERGE (p)-[:HAS_SUMMARY]->(s:Summary)
SET s.text = $summary
WITH s
CALL db.create.setVectorProperty(s, 'embedding', $embedding)
YIELD node
RETURN count(*)
""",
params,
)
# Create vector index
try:
graph.query(
"CALL db.index.vector.createNodeIndex('summary', "
"'Summary', 'embedding', $dimension, 'cosine')",
{"dimension": embedding_dimension},
)
except ClientError: # already exists
pass