mirror of
https://github.com/hwchase17/langchain
synced 2024-10-31 15:20:26 +00:00
65091ebe50
More descriptive name. Add parser in ingest. Update image link
94 lines
2.7 KiB
Python
94 lines
2.7 KiB
Python
import logging
|
|
import uuid
|
|
from typing import Sequence
|
|
|
|
from bs4 import BeautifulSoup as Soup
|
|
from langchain_core.documents import Document
|
|
from langchain_core.runnables import Runnable
|
|
|
|
from propositional_retrieval.constants import DOCSTORE_ID_KEY
|
|
from propositional_retrieval.proposal_chain import proposition_chain
|
|
from propositional_retrieval.storage import get_multi_vector_retriever
|
|
|
|
logging.basicConfig(level=logging.INFO)
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def add_documents(
|
|
retriever,
|
|
propositions: Sequence[Sequence[str]],
|
|
docs: Sequence[Document],
|
|
id_key: str = DOCSTORE_ID_KEY,
|
|
):
|
|
doc_ids = [
|
|
str(uuid.uuid5(uuid.NAMESPACE_DNS, doc.metadata["source"])) for doc in docs
|
|
]
|
|
prop_docs = [
|
|
Document(page_content=prop, metadata={id_key: doc_ids[i]})
|
|
for i, props in enumerate(propositions)
|
|
for prop in props
|
|
if prop
|
|
]
|
|
retriever.vectorstore.add_documents(prop_docs)
|
|
retriever.docstore.mset(list(zip(doc_ids, docs)))
|
|
|
|
|
|
def create_index(
|
|
docs: Sequence[Document],
|
|
indexer: Runnable,
|
|
docstore_id_key: str = DOCSTORE_ID_KEY,
|
|
):
|
|
"""
|
|
Create retriever that indexes docs and their propositions
|
|
|
|
:param docs: Documents to index
|
|
:param indexer: Runnable creates additional propositions per doc
|
|
:param docstore_id_key: Key to use to store the docstore id
|
|
:return: Retriever
|
|
"""
|
|
logger.info("Creating multi-vector retriever")
|
|
retriever = get_multi_vector_retriever(docstore_id_key)
|
|
propositions = indexer.batch(
|
|
[{"input": doc.page_content} for doc in docs], {"max_concurrency": 10}
|
|
)
|
|
|
|
add_documents(
|
|
retriever,
|
|
propositions,
|
|
docs,
|
|
id_key=docstore_id_key,
|
|
)
|
|
|
|
return retriever
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# For our example, we'll load docs from the web
|
|
from langchain.text_splitter import RecursiveCharacterTextSplitter # noqa
|
|
from langchain_community.document_loaders.recursive_url_loader import (
|
|
RecursiveUrlLoader,
|
|
) # noqa
|
|
|
|
# The attention is all you need paper
|
|
# Could add more parsing here, as it's very raw.
|
|
loader = RecursiveUrlLoader(
|
|
"https://ar5iv.labs.arxiv.org/html/1706.03762",
|
|
max_depth=2,
|
|
extractor=lambda x: Soup(x, "html.parser").text,
|
|
)
|
|
data = loader.load()
|
|
logger.info(f"Loaded {len(data)} documents")
|
|
|
|
# Split
|
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=8000, chunk_overlap=0)
|
|
all_splits = text_splitter.split_documents(data)
|
|
logger.info(f"Split into {len(all_splits)} documents")
|
|
|
|
# Create retriever
|
|
retriever_multi_vector_img = create_index(
|
|
all_splits,
|
|
proposition_chain,
|
|
DOCSTORE_ID_KEY,
|
|
)
|