mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
c50099161b
Using UUID1 is incorrect since it's time dependent, which makes it easy to generate the exact same uuid
1583 lines
52 KiB
Python
1583 lines
52 KiB
Python
from __future__ import annotations
|
|
|
|
import base64
|
|
import logging
|
|
import uuid
|
|
from copy import deepcopy
|
|
from typing import (
|
|
TYPE_CHECKING,
|
|
Any,
|
|
Callable,
|
|
Dict,
|
|
Iterable,
|
|
List,
|
|
Literal,
|
|
Optional,
|
|
Sized,
|
|
Tuple,
|
|
Type,
|
|
Union,
|
|
get_args,
|
|
)
|
|
|
|
import numpy as np
|
|
from langchain_core.documents import Document
|
|
from langchain_core.embeddings import Embeddings
|
|
from langchain_core.vectorstores import VectorStore
|
|
|
|
from langchain_community.vectorstores.utils import maximal_marginal_relevance
|
|
|
|
if TYPE_CHECKING:
|
|
import vdms
|
|
|
|
|
|
DISTANCE_METRICS = Literal[
|
|
"L2", # Euclidean Distance
|
|
"IP", # Inner Product
|
|
]
|
|
AVAILABLE_DISTANCE_METRICS: List[DISTANCE_METRICS] = list(get_args(DISTANCE_METRICS))
|
|
ENGINES = Literal[
|
|
"TileDBDense", # TileDB Dense
|
|
"TileDBSparse", # TileDB Sparse
|
|
"FaissFlat", # FAISS IndexFlat
|
|
"FaissIVFFlat", # FAISS IndexIVFFlat
|
|
"Flinng", # FLINNG
|
|
]
|
|
AVAILABLE_ENGINES: List[ENGINES] = list(get_args(ENGINES))
|
|
DEFAULT_COLLECTION_NAME = "langchain"
|
|
DEFAULT_INSERT_BATCH_SIZE = 32
|
|
# Number of Documents to return.
|
|
DEFAULT_K = 3
|
|
# Number of Documents to fetch to pass to knn when filters applied.
|
|
DEFAULT_FETCH_K = DEFAULT_K * 5
|
|
DEFAULT_PROPERTIES = ["_distance", "id", "content"]
|
|
INVALID_DOC_METADATA_KEYS = ["_distance", "content", "blob"]
|
|
INVALID_METADATA_VALUE = ["Missing property", None, {}] # type: List
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def _len_check_if_sized(x: Any, y: Any, x_name: str, y_name: str) -> None:
|
|
"""
|
|
Check that sizes of two variables are the same
|
|
|
|
Args:
|
|
x: Variable to compare
|
|
y: Variable to compare
|
|
x_name: Name for variable x
|
|
y_name: Name for variable y
|
|
"""
|
|
if isinstance(x, Sized) and isinstance(y, Sized) and len(x) != len(y):
|
|
raise ValueError(
|
|
f"{x_name} and {y_name} expected to be equal length but "
|
|
f"len({x_name})={len(x)} and len({y_name})={len(y)}"
|
|
)
|
|
return
|
|
|
|
|
|
def VDMS_Client(host: str = "localhost", port: int = 55555) -> vdms.vdms:
|
|
"""VDMS client for the VDMS server.
|
|
|
|
Args:
|
|
host: IP or hostname of VDMS server
|
|
port: Port to connect to VDMS server
|
|
"""
|
|
try:
|
|
import vdms
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import vdms python package. "
|
|
"Please install it with `pip install vdms."
|
|
)
|
|
|
|
client = vdms.vdms()
|
|
client.connect(host, port)
|
|
return client
|
|
|
|
|
|
class VDMS(VectorStore):
|
|
"""Intel Lab's VDMS for vector-store workloads.
|
|
|
|
To use, you should have both:
|
|
- the ``vdms`` python package installed
|
|
- a host (str) and port (int) associated with a deployed VDMS Server
|
|
|
|
Visit https://github.com/IntelLabs/vdms/wiki more information.
|
|
|
|
IT IS HIGHLY SUGGESTED TO NORMALIZE YOUR DATA.
|
|
|
|
Args:
|
|
client: VDMS Client used to connect to VDMS server
|
|
collection_name: Name of data collection [Default: langchain]
|
|
distance_strategy: Method used to calculate distances. VDMS supports
|
|
"L2" (euclidean distance) or "IP" (inner product) [Default: L2]
|
|
engine: Underlying implementation for indexing and computing distances.
|
|
VDMS supports TileDBDense, TileDBSparse, FaissFlat, FaissIVFFlat,
|
|
and Flinng [Default: FaissFlat]
|
|
embedding: Any embedding function implementing
|
|
`langchain_core.embeddings.Embeddings` interface.
|
|
relevance_score_fn: Function for obtaining relevance score
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
from langchain_community.vectorstores.vdms import VDMS, VDMS_Client
|
|
|
|
vectorstore = VDMS(
|
|
client=VDMS_Client("localhost", 55555),
|
|
embedding=HuggingFaceEmbeddings(),
|
|
collection_name="langchain-demo",
|
|
distance_strategy="L2",
|
|
engine="FaissFlat",
|
|
)
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
client: vdms.vdms,
|
|
*,
|
|
embedding: Optional[Embeddings] = None,
|
|
collection_name: str = DEFAULT_COLLECTION_NAME, # DescriptorSet name
|
|
distance_strategy: DISTANCE_METRICS = "L2",
|
|
engine: ENGINES = "FaissFlat",
|
|
relevance_score_fn: Optional[Callable[[float], float]] = None,
|
|
) -> None:
|
|
# Check required parameters
|
|
self._client = client
|
|
self.similarity_search_engine = engine
|
|
self.distance_strategy = distance_strategy
|
|
self.embedding = embedding
|
|
self._check_required_inputs(collection_name)
|
|
|
|
# Update other parameters
|
|
self.override_relevance_score_fn = relevance_score_fn
|
|
|
|
# Initialize collection
|
|
self._collection_name = self.__add_set(
|
|
collection_name,
|
|
engine=self.similarity_search_engine,
|
|
metric=self.distance_strategy,
|
|
)
|
|
|
|
@property
|
|
def embeddings(self) -> Optional[Embeddings]:
|
|
return self.embedding
|
|
|
|
def _embed_documents(self, texts: List[str]) -> List[List[float]]:
|
|
if isinstance(self.embedding, Embeddings):
|
|
return self.embedding.embed_documents(texts)
|
|
else:
|
|
p_str = "Must provide `embedding` which is expected"
|
|
p_str += " to be an Embeddings object"
|
|
raise ValueError(p_str)
|
|
|
|
def _embed_image(self, uris: List[str]) -> List[List[float]]:
|
|
if self.embedding is not None and hasattr(self.embedding, "embed_image"):
|
|
return self.embedding.embed_image(uris=uris)
|
|
else:
|
|
raise ValueError(
|
|
"Must provide `embedding` which has attribute `embed_image`"
|
|
)
|
|
|
|
def _embed_query(self, text: str) -> List[float]:
|
|
if isinstance(self.embedding, Embeddings):
|
|
return self.embedding.embed_query(text)
|
|
else:
|
|
raise ValueError(
|
|
"Must provide `embedding` which is expected"
|
|
" to be an Embeddings object"
|
|
)
|
|
|
|
def _select_relevance_score_fn(self) -> Callable[[float], float]:
|
|
"""
|
|
The 'correct' relevance function
|
|
may differ depending on a few things, including:
|
|
- the distance / similarity metric used by the VectorStore
|
|
- the scale of your embeddings (OpenAI's are unit normed. Many others are not!)
|
|
- embedding dimensionality
|
|
- etc.
|
|
"""
|
|
if self.override_relevance_score_fn is not None:
|
|
return self.override_relevance_score_fn
|
|
|
|
# Default strategy is to rely on distance strategy provided
|
|
# in vectorstore constructor
|
|
if self.distance_strategy.lower() in ["ip", "l2"]:
|
|
return lambda x: x
|
|
else:
|
|
raise ValueError(
|
|
"No supported normalization function"
|
|
f" for distance_strategy of {self.distance_strategy}."
|
|
"Consider providing relevance_score_fn to VDMS constructor."
|
|
)
|
|
|
|
def _similarity_search_with_relevance_scores(
|
|
self,
|
|
query: str,
|
|
k: int = DEFAULT_K,
|
|
fetch_k: int = DEFAULT_FETCH_K,
|
|
filter: Optional[Dict[str, Any]] = None,
|
|
**kwargs: Any,
|
|
) -> List[Tuple[Document, float]]:
|
|
"""Return docs and their similarity scores on a scale from 0 to 1."""
|
|
if self.override_relevance_score_fn is None:
|
|
kwargs["normalize_distance"] = True
|
|
docs_and_scores = self.similarity_search_with_score(
|
|
query,
|
|
k,
|
|
fetch_k,
|
|
filter,
|
|
**kwargs,
|
|
)
|
|
|
|
docs_and_rel_scores: List[Any] = []
|
|
for doc, score in docs_and_scores:
|
|
if self.override_relevance_score_fn is None:
|
|
docs_and_rel_scores.append((doc, score))
|
|
else:
|
|
docs_and_rel_scores.append(
|
|
(doc, self.override_relevance_score_fn(score))
|
|
)
|
|
return docs_and_rel_scores
|
|
|
|
def __add(
|
|
self,
|
|
collection_name: str,
|
|
texts: List[str],
|
|
embeddings: List[List[float]],
|
|
metadatas: Optional[Union[List[None], List[Dict[str, Any]]]] = None,
|
|
ids: Optional[List[str]] = None,
|
|
) -> List:
|
|
_len_check_if_sized(texts, embeddings, "texts", "embeddings")
|
|
|
|
metadatas = metadatas if metadatas is not None else [None for _ in texts]
|
|
_len_check_if_sized(texts, metadatas, "texts", "metadatas")
|
|
|
|
ids = ids if ids is not None else [str(uuid.uuid4()) for _ in texts]
|
|
_len_check_if_sized(texts, ids, "texts", "ids")
|
|
|
|
all_queries: List[Any] = []
|
|
all_blobs: List[Any] = []
|
|
inserted_ids: List[Any] = []
|
|
for meta, emb, doc, id in zip(metadatas, embeddings, texts, ids):
|
|
query, blob = self.__get_add_query(
|
|
collection_name, metadata=meta, embedding=emb, document=doc, id=id
|
|
)
|
|
|
|
if blob is not None:
|
|
all_queries.append(query)
|
|
all_blobs.append(blob)
|
|
inserted_ids.append(id)
|
|
|
|
response, response_array = self.__run_vdms_query(all_queries, all_blobs)
|
|
|
|
return inserted_ids
|
|
|
|
def __add_set(
|
|
self,
|
|
collection_name: str,
|
|
engine: ENGINES = "FaissFlat",
|
|
metric: DISTANCE_METRICS = "L2",
|
|
) -> str:
|
|
query = _add_descriptorset(
|
|
"AddDescriptorSet",
|
|
collection_name,
|
|
self.embedding_dimension,
|
|
engine=getattr(engine, "value", engine),
|
|
metric=getattr(metric, "value", metric),
|
|
)
|
|
|
|
response, _ = self.__run_vdms_query([query])
|
|
|
|
if "FailedCommand" in response[0]:
|
|
raise ValueError(f"Failed to add collection {collection_name}")
|
|
|
|
return collection_name
|
|
|
|
def __delete(
|
|
self,
|
|
collection_name: str,
|
|
ids: Union[None, List[str]] = None,
|
|
constraints: Union[None, Dict[str, Any]] = None,
|
|
) -> bool:
|
|
"""
|
|
Deletes entire collection if id is not provided
|
|
"""
|
|
all_queries: List[Any] = []
|
|
all_blobs: List[Any] = []
|
|
|
|
collection_properties = self.__get_properties(collection_name)
|
|
results = {"list": collection_properties}
|
|
|
|
if constraints is None:
|
|
constraints = {"_deletion": ["==", 1]}
|
|
else:
|
|
constraints["_deletion"] = ["==", 1]
|
|
|
|
if ids is not None:
|
|
constraints["id"] = ["==", ids[0]] # if len(ids) > 1 else ids[0]]
|
|
|
|
query = _add_descriptor(
|
|
"FindDescriptor",
|
|
collection_name,
|
|
label=None,
|
|
ref=None,
|
|
props=None,
|
|
link=None,
|
|
k_neighbors=None,
|
|
constraints=constraints,
|
|
results=results,
|
|
)
|
|
|
|
all_queries.append(query)
|
|
response, response_array = self.__run_vdms_query(all_queries, all_blobs)
|
|
return "FindDescriptor" in response[0]
|
|
|
|
def __get_add_query(
|
|
self,
|
|
collection_name: str,
|
|
metadata: Optional[Any] = None,
|
|
embedding: Union[List[float], None] = None,
|
|
document: Optional[Any] = None,
|
|
id: Optional[str] = None,
|
|
) -> Tuple[Dict[str, Dict[str, Any]], Union[bytes, None]]:
|
|
if id is None:
|
|
props: Dict[str, Any] = {}
|
|
else:
|
|
props = {"id": id}
|
|
id_exists, query = _check_descriptor_exists_by_id(
|
|
self._client, collection_name, id
|
|
)
|
|
if id_exists:
|
|
skipped_value = {
|
|
prop_key: prop_val[-1]
|
|
for prop_key, prop_val in query["FindDescriptor"][
|
|
"constraints"
|
|
].items()
|
|
}
|
|
pstr = f"[!] Embedding with id ({id}) exists in DB;"
|
|
pstr += "Therefore, skipped and not inserted"
|
|
print(pstr) # noqa: T201
|
|
print(f"\tSkipped values are: {skipped_value}") # noqa: T201
|
|
return query, None
|
|
|
|
if metadata:
|
|
props.update(metadata)
|
|
if document:
|
|
props["content"] = document
|
|
|
|
for k in props.keys():
|
|
if k not in self.collection_properties:
|
|
self.collection_properties.append(k)
|
|
|
|
query = _add_descriptor(
|
|
"AddDescriptor",
|
|
collection_name,
|
|
label=None,
|
|
ref=None,
|
|
props=props,
|
|
link=None,
|
|
k_neighbors=None,
|
|
constraints=None,
|
|
results=None,
|
|
)
|
|
|
|
blob = embedding2bytes(embedding)
|
|
|
|
return (
|
|
query,
|
|
blob,
|
|
)
|
|
|
|
def __get_properties(
|
|
self,
|
|
collection_name: str,
|
|
unique_entity: Optional[bool] = False,
|
|
deletion: Optional[bool] = False,
|
|
) -> List[str]:
|
|
find_query = _find_property_entity(
|
|
collection_name, unique_entity=unique_entity, deletion=deletion
|
|
)
|
|
response, response_blob = self.__run_vdms_query([find_query])
|
|
if len(response_blob) > 0:
|
|
collection_properties = _bytes2str(response_blob[0]).split(",")
|
|
else:
|
|
collection_properties = deepcopy(DEFAULT_PROPERTIES)
|
|
return collection_properties
|
|
|
|
def __run_vdms_query(
|
|
self,
|
|
all_queries: List[Dict],
|
|
all_blobs: Optional[List] = [],
|
|
print_last_response: Optional[bool] = False,
|
|
) -> Tuple[Any, Any]:
|
|
response, response_array = self._client.query(all_queries, all_blobs)
|
|
|
|
_ = _check_valid_response(all_queries, response)
|
|
if print_last_response:
|
|
self._client.print_last_response()
|
|
return response, response_array
|
|
|
|
def __update(
|
|
self,
|
|
collection_name: str,
|
|
ids: List[str],
|
|
documents: List[str],
|
|
embeddings: List[List[float]],
|
|
metadatas: Optional[Union[List[None], List[Dict[str, Any]]]] = None,
|
|
) -> None:
|
|
"""
|
|
Updates (find, delete, add) a collection based on id.
|
|
If more than one collection returned with id, error occuers
|
|
"""
|
|
_len_check_if_sized(ids, documents, "ids", "documents")
|
|
|
|
_len_check_if_sized(ids, embeddings, "ids", "embeddings")
|
|
|
|
metadatas = metadatas if metadatas is not None else [None for _ in ids]
|
|
_len_check_if_sized(ids, metadatas, "ids", "metadatas")
|
|
|
|
orig_props = self.__get_properties(collection_name)
|
|
|
|
updated_ids: List[Any] = []
|
|
for meta, emb, doc, id in zip(metadatas, embeddings, documents, ids):
|
|
results = {"list": self.collection_properties}
|
|
|
|
constraints = {"_deletion": ["==", 1]}
|
|
|
|
if id is not None:
|
|
constraints["id"] = ["==", id]
|
|
|
|
query = _add_descriptor(
|
|
"FindDescriptor",
|
|
collection_name,
|
|
label=None,
|
|
ref=None,
|
|
props=None,
|
|
link=None,
|
|
k_neighbors=None,
|
|
constraints=constraints,
|
|
results=results,
|
|
)
|
|
|
|
response, response_array = self.__run_vdms_query([query])
|
|
|
|
query, blob = self.__get_add_query(
|
|
collection_name,
|
|
metadata=meta,
|
|
embedding=emb,
|
|
document=doc,
|
|
id=id,
|
|
)
|
|
if blob is not None:
|
|
response, response_array = self.__run_vdms_query([query], [blob])
|
|
updated_ids.append(id)
|
|
|
|
self.__update_properties(
|
|
collection_name, orig_props, self.collection_properties
|
|
)
|
|
|
|
def __update_properties(
|
|
self,
|
|
collection_name: str,
|
|
current_collection_properties: List,
|
|
new_collection_properties: Optional[List],
|
|
) -> None:
|
|
if new_collection_properties is not None:
|
|
old_collection_properties = deepcopy(current_collection_properties)
|
|
for prop in new_collection_properties:
|
|
if prop not in current_collection_properties:
|
|
current_collection_properties.append(prop)
|
|
|
|
if current_collection_properties != old_collection_properties:
|
|
all_queries, blob_arr = _build_property_query(
|
|
collection_name,
|
|
command_type="update",
|
|
all_properties=current_collection_properties,
|
|
)
|
|
response, _ = self.__run_vdms_query(all_queries, [blob_arr])
|
|
|
|
def add_images(
|
|
self,
|
|
uris: List[str],
|
|
metadatas: Optional[List[dict]] = None,
|
|
ids: Optional[List[str]] = None,
|
|
batch_size: int = DEFAULT_INSERT_BATCH_SIZE,
|
|
add_path: Optional[bool] = True,
|
|
**kwargs: Any,
|
|
) -> List[str]:
|
|
"""Run more images through the embeddings and add to the vectorstore.
|
|
|
|
Images are added as embeddings (AddDescriptor) instead of separate
|
|
entity (AddImage) within VDMS to leverage similarity search capability
|
|
|
|
Args:
|
|
uris: List of paths to the images to add to the vectorstore.
|
|
metadatas: Optional list of metadatas associated with the texts.
|
|
ids: Optional list of unique IDs.
|
|
batch_size (int): Number of concurrent requests to send to the server.
|
|
add_path: Bool to add image path as metadata
|
|
|
|
Returns:
|
|
List of ids from adding images into the vectorstore.
|
|
"""
|
|
# Map from uris to blobs to base64
|
|
b64_texts = [self.encode_image(image_path=uri) for uri in uris]
|
|
|
|
if add_path and metadatas:
|
|
for midx, uri in enumerate(uris):
|
|
metadatas[midx]["image_path"] = uri
|
|
elif add_path:
|
|
metadatas = []
|
|
for uri in uris:
|
|
metadatas.append({"image_path": uri})
|
|
|
|
# Populate IDs
|
|
ids = ids if ids is not None else [str(uuid.uuid4()) for _ in uris]
|
|
|
|
# Set embeddings
|
|
embeddings = self._embed_image(uris=uris)
|
|
|
|
if metadatas is None:
|
|
metadatas = [{} for _ in uris]
|
|
else:
|
|
metadatas = [_validate_vdms_properties(m) for m in metadatas]
|
|
|
|
self.__from(
|
|
texts=b64_texts,
|
|
embeddings=embeddings,
|
|
ids=ids,
|
|
metadatas=metadatas,
|
|
batch_size=batch_size,
|
|
**kwargs,
|
|
)
|
|
return ids
|
|
|
|
def add_texts(
|
|
self,
|
|
texts: Iterable[str],
|
|
metadatas: Optional[List[dict]] = None,
|
|
ids: Optional[List[str]] = None,
|
|
batch_size: int = DEFAULT_INSERT_BATCH_SIZE,
|
|
**kwargs: Any,
|
|
) -> List[str]:
|
|
"""Run more texts through the embeddings and add to the vectorstore.
|
|
|
|
Args:
|
|
texts: List of strings to add to the vectorstore.
|
|
metadatas: Optional list of metadatas associated with the texts.
|
|
ids: Optional list of unique IDs.
|
|
batch_size (int): Number of concurrent requests to send to the server.
|
|
|
|
Returns:
|
|
List of ids from adding the texts into the vectorstore.
|
|
"""
|
|
|
|
texts = list(texts)
|
|
if ids is None:
|
|
ids = [str(uuid.uuid4()) for _ in texts]
|
|
|
|
embeddings = self._embed_documents(texts)
|
|
|
|
if metadatas is None:
|
|
metadatas = [{} for _ in texts]
|
|
else:
|
|
metadatas = [_validate_vdms_properties(m) for m in metadatas]
|
|
|
|
inserted_ids = self.__from(
|
|
texts=texts,
|
|
embeddings=embeddings,
|
|
ids=ids,
|
|
metadatas=metadatas,
|
|
batch_size=batch_size,
|
|
**kwargs,
|
|
)
|
|
return inserted_ids
|
|
|
|
def __from(
|
|
self,
|
|
texts: List[str],
|
|
embeddings: List[List[float]],
|
|
ids: List[str],
|
|
metadatas: Optional[List[dict]] = None,
|
|
batch_size: int = DEFAULT_INSERT_BATCH_SIZE,
|
|
**kwargs: Any,
|
|
) -> List[str]:
|
|
# Get initial properties
|
|
orig_props = self.__get_properties(self._collection_name)
|
|
inserted_ids: List[str] = []
|
|
for start_idx in range(0, len(texts), batch_size):
|
|
end_idx = min(start_idx + batch_size, len(texts))
|
|
|
|
batch_texts = texts[start_idx:end_idx]
|
|
batch_embedding_vectors = embeddings[start_idx:end_idx]
|
|
batch_ids = ids[start_idx:end_idx]
|
|
if metadatas:
|
|
batch_metadatas = metadatas[start_idx:end_idx]
|
|
|
|
result = self.__add(
|
|
self._collection_name,
|
|
embeddings=batch_embedding_vectors,
|
|
texts=batch_texts,
|
|
metadatas=batch_metadatas,
|
|
ids=batch_ids,
|
|
)
|
|
|
|
inserted_ids.extend(result)
|
|
|
|
# Update Properties
|
|
self.__update_properties(
|
|
self._collection_name, orig_props, self.collection_properties
|
|
)
|
|
return inserted_ids
|
|
|
|
def _check_required_inputs(self, collection_name: str) -> None:
|
|
# Check connection to client
|
|
if not self._client.is_connected():
|
|
raise ValueError(
|
|
"VDMS client must be connected to a VDMS server."
|
|
+ "Please use VDMS_Client to establish a connection"
|
|
)
|
|
|
|
# Check Distance Metric
|
|
if self.distance_strategy not in AVAILABLE_DISTANCE_METRICS:
|
|
raise ValueError("distance_strategy must be either 'L2' or 'IP'")
|
|
|
|
# Check Engines
|
|
if self.similarity_search_engine not in AVAILABLE_ENGINES:
|
|
raise ValueError(
|
|
"engine must be either 'TileDBDense', 'TileDBSparse', "
|
|
+ "'FaissFlat', 'FaissIVFFlat', or 'Flinng'"
|
|
)
|
|
|
|
# Check Embedding Func is provided and store dimension size
|
|
if self.embedding is None:
|
|
raise ValueError("Must provide embedding function")
|
|
|
|
self.embedding_dimension = len(self._embed_query("This is a sample sentence."))
|
|
|
|
# Check for properties
|
|
current_props = self.__get_properties(collection_name)
|
|
if hasattr(self, "collection_properties"):
|
|
self.collection_properties.extend(current_props)
|
|
else:
|
|
self.collection_properties: List[str] = current_props
|
|
|
|
def count(self, collection_name: str) -> int:
|
|
all_queries: List[Any] = []
|
|
all_blobs: List[Any] = []
|
|
|
|
results = {"count": "", "list": ["id"]} # collection_properties}
|
|
query = _add_descriptor(
|
|
"FindDescriptor",
|
|
collection_name,
|
|
label=None,
|
|
ref=None,
|
|
props=None,
|
|
link=None,
|
|
k_neighbors=None,
|
|
constraints=None,
|
|
results=results,
|
|
)
|
|
|
|
all_queries.append(query)
|
|
|
|
response, response_array = self.__run_vdms_query(all_queries, all_blobs)
|
|
return response[0]["FindDescriptor"]["returned"]
|
|
|
|
def decode_image(self, base64_image: str) -> bytes:
|
|
return base64.b64decode(base64_image)
|
|
|
|
def delete(
|
|
self,
|
|
ids: Optional[List[str]] = None,
|
|
collection_name: Optional[str] = None,
|
|
constraints: Optional[Dict] = None,
|
|
**kwargs: Any,
|
|
) -> bool:
|
|
"""Delete by ID. These are the IDs in the vectorstore.
|
|
|
|
Args:
|
|
ids: List of ids to delete.
|
|
|
|
Returns:
|
|
Optional[bool]: True if deletion is successful,
|
|
False otherwise, None if not implemented.
|
|
"""
|
|
name = collection_name if collection_name is not None else self._collection_name
|
|
return self.__delete(name, ids=ids, constraints=constraints)
|
|
|
|
def get_k_candidates(
|
|
self,
|
|
setname: str,
|
|
fetch_k: Optional[int],
|
|
results: Optional[Dict[str, Any]] = None,
|
|
all_blobs: Optional[List] = None,
|
|
normalize: Optional[bool] = False,
|
|
) -> Tuple[List[Dict[str, Any]], List, float]:
|
|
max_dist = 1
|
|
command_str = "FindDescriptor"
|
|
query = _add_descriptor(
|
|
command_str,
|
|
setname,
|
|
k_neighbors=fetch_k,
|
|
results=results,
|
|
)
|
|
response, response_array = self.__run_vdms_query([query], all_blobs)
|
|
|
|
if normalize:
|
|
max_dist = response[0][command_str]["entities"][-1]["_distance"]
|
|
|
|
return response, response_array, max_dist
|
|
|
|
def get_descriptor_response(
|
|
self,
|
|
command_str: str,
|
|
setname: str,
|
|
k_neighbors: int = DEFAULT_K,
|
|
fetch_k: int = DEFAULT_FETCH_K,
|
|
constraints: Optional[dict] = None,
|
|
results: Optional[Dict[str, Any]] = None,
|
|
query_embedding: Optional[List[float]] = None,
|
|
normalize_distance: bool = False,
|
|
) -> Tuple[List[Dict[str, Any]], List]:
|
|
all_blobs: List[Any] = []
|
|
blob = embedding2bytes(query_embedding)
|
|
if blob is not None:
|
|
all_blobs.append(blob)
|
|
|
|
if constraints is None:
|
|
# K results returned
|
|
response, response_array, max_dist = self.get_k_candidates(
|
|
setname, k_neighbors, results, all_blobs, normalize=normalize_distance
|
|
)
|
|
else:
|
|
if results is None:
|
|
results = {"list": ["id"]}
|
|
elif "list" not in results:
|
|
results["list"] = ["id"]
|
|
elif "id" not in results["list"]:
|
|
results["list"].append("id")
|
|
|
|
# (1) Find docs satisfy constraints
|
|
query = _add_descriptor(
|
|
command_str,
|
|
setname,
|
|
constraints=constraints,
|
|
results=results,
|
|
)
|
|
response, response_array = self.__run_vdms_query([query])
|
|
ids_of_interest = [
|
|
ent["id"] for ent in response[0][command_str]["entities"]
|
|
]
|
|
|
|
# (2) Find top fetch_k results
|
|
response, response_array, max_dist = self.get_k_candidates(
|
|
setname, fetch_k, results, all_blobs, normalize=normalize_distance
|
|
)
|
|
|
|
# (3) Intersection of (1) & (2) using ids
|
|
new_entities: List[Dict] = []
|
|
for ent in response[0][command_str]["entities"]:
|
|
if ent["id"] in ids_of_interest:
|
|
new_entities.append(ent)
|
|
if len(new_entities) == k_neighbors:
|
|
break
|
|
response[0][command_str]["entities"] = new_entities
|
|
response[0][command_str]["returned"] = len(new_entities)
|
|
if len(new_entities) < k_neighbors:
|
|
p_str = "Returned items < k_neighbors; Try increasing fetch_k"
|
|
print(p_str) # noqa: T201
|
|
|
|
if normalize_distance:
|
|
max_dist = 1.0 if max_dist == 0 else max_dist
|
|
for ent_idx, ent in enumerate(response[0][command_str]["entities"]):
|
|
ent["_distance"] = ent["_distance"] / max_dist
|
|
response[0][command_str]["entities"][ent_idx]["_distance"] = ent[
|
|
"_distance"
|
|
]
|
|
|
|
return response, response_array
|
|
|
|
def encode_image(self, image_path: str) -> str:
|
|
with open(image_path, "rb") as f:
|
|
blob = f.read()
|
|
return base64.b64encode(blob).decode("utf-8")
|
|
|
|
@classmethod
|
|
def from_documents(
|
|
cls: Type[VDMS],
|
|
documents: List[Document],
|
|
embedding: Optional[Embeddings] = None,
|
|
ids: Optional[List[str]] = None,
|
|
batch_size: int = DEFAULT_INSERT_BATCH_SIZE,
|
|
collection_name: str = DEFAULT_COLLECTION_NAME, # Add this line
|
|
**kwargs: Any,
|
|
) -> VDMS:
|
|
"""Create a VDMS vectorstore from a list of documents.
|
|
|
|
Args:
|
|
collection_name (str): Name of the collection to create.
|
|
documents (List[Document]): List of documents to add to vectorstore.
|
|
embedding (Embeddings): Embedding function. Defaults to None.
|
|
ids (Optional[List[str]]): List of document IDs. Defaults to None.
|
|
batch_size (int): Number of concurrent requests to send to the server.
|
|
|
|
Returns:
|
|
VDMS: VDMS vectorstore.
|
|
"""
|
|
client: vdms.vdms = kwargs["client"]
|
|
|
|
return cls.from_texts(
|
|
client=client,
|
|
texts=[doc.page_content for doc in documents],
|
|
metadatas=[doc.metadata for doc in documents],
|
|
embedding=embedding,
|
|
ids=ids,
|
|
batch_size=batch_size,
|
|
collection_name=collection_name,
|
|
# **kwargs,
|
|
)
|
|
|
|
@classmethod
|
|
def from_texts(
|
|
cls: Type[VDMS],
|
|
texts: List[str],
|
|
embedding: Optional[Embeddings] = None,
|
|
metadatas: Optional[List[dict]] = None,
|
|
ids: Optional[List[str]] = None,
|
|
batch_size: int = DEFAULT_INSERT_BATCH_SIZE,
|
|
collection_name: str = DEFAULT_COLLECTION_NAME,
|
|
**kwargs: Any,
|
|
) -> VDMS:
|
|
"""Create a VDMS vectorstore from a raw documents.
|
|
|
|
Args:
|
|
texts (List[str]): List of texts to add to the collection.
|
|
embedding (Embeddings): Embedding function. Defaults to None.
|
|
metadatas (Optional[List[dict]]): List of metadatas. Defaults to None.
|
|
ids (Optional[List[str]]): List of document IDs. Defaults to None.
|
|
batch_size (int): Number of concurrent requests to send to the server.
|
|
collection_name (str): Name of the collection to create.
|
|
|
|
Returns:
|
|
VDMS: VDMS vectorstore.
|
|
"""
|
|
client: vdms.vdms = kwargs["client"]
|
|
vdms_collection = cls(
|
|
collection_name=collection_name,
|
|
embedding=embedding,
|
|
client=client,
|
|
# **kwargs,
|
|
)
|
|
if ids is None:
|
|
ids = [str(uuid.uuid4()) for _ in texts]
|
|
vdms_collection.add_texts(
|
|
texts=texts,
|
|
metadatas=metadatas,
|
|
ids=ids,
|
|
batch_size=batch_size, # **kwargs
|
|
)
|
|
return vdms_collection
|
|
|
|
def get(
|
|
self,
|
|
collection_name: str,
|
|
constraints: Optional[Dict] = None,
|
|
limit: Optional[int] = None,
|
|
include: List[str] = ["metadata"],
|
|
) -> Tuple[Any, Any]:
|
|
"""Gets the collection.
|
|
Get embeddings and their associated data from the data store.
|
|
If no constraints provided returns all embeddings up to limit.
|
|
|
|
Args:
|
|
constraints: A dict used to filter results by.
|
|
E.g. `{"color" : ["==", "red"], "price": [">", 4.00]}`. Optional.
|
|
limit: The number of documents to return. Optional.
|
|
include: A list of what to include in the results.
|
|
Can contain `"embeddings"`, `"metadatas"`, `"documents"`.
|
|
Ids are always included.
|
|
Defaults to `["metadatas", "documents"]`. Optional.
|
|
"""
|
|
all_queries: List[Any] = []
|
|
all_blobs: List[Any] = []
|
|
|
|
results: Dict[str, Any] = {"count": ""}
|
|
|
|
if limit is not None:
|
|
results["limit"] = limit
|
|
|
|
# Include metadata
|
|
if "metadata" in include:
|
|
collection_properties = self.__get_properties(collection_name)
|
|
results["list"] = collection_properties
|
|
|
|
# Include embedding
|
|
if "embeddings" in include:
|
|
results["blob"] = True
|
|
|
|
query = _add_descriptor(
|
|
"FindDescriptor",
|
|
collection_name,
|
|
k_neighbors=None,
|
|
constraints=constraints,
|
|
results=results,
|
|
)
|
|
|
|
all_queries.append(query)
|
|
|
|
response, response_array = self.__run_vdms_query(all_queries, all_blobs)
|
|
return response, response_array
|
|
|
|
def max_marginal_relevance_search(
|
|
self,
|
|
query: str,
|
|
k: int = DEFAULT_K,
|
|
fetch_k: int = DEFAULT_FETCH_K,
|
|
lambda_mult: float = 0.5,
|
|
filter: Optional[Dict[str, List]] = None,
|
|
**kwargs: Any,
|
|
) -> List[Document]:
|
|
"""Return docs selected using the maximal marginal relevance.
|
|
Maximal marginal relevance optimizes for similarity to query AND diversity
|
|
among selected documents.
|
|
|
|
Args:
|
|
query: Text to look up documents similar to.
|
|
k: Number of Documents to return. Defaults to 4.
|
|
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
|
|
lambda_mult: Number between 0 and 1 that determines the degree
|
|
of diversity among the results with 0 corresponding
|
|
to maximum diversity and 1 to minimum diversity.
|
|
Defaults to 0.5.
|
|
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
|
|
|
Returns:
|
|
List of Documents selected by maximal marginal relevance.
|
|
"""
|
|
if self.embedding is None:
|
|
raise ValueError(
|
|
"For MMR search, you must specify an embedding function on" "creation."
|
|
)
|
|
|
|
embedding_vector: List[float] = self._embed_query(query)
|
|
docs = self.max_marginal_relevance_search_by_vector(
|
|
embedding_vector,
|
|
k,
|
|
fetch_k,
|
|
lambda_mult=lambda_mult,
|
|
filter=filter,
|
|
)
|
|
return docs
|
|
|
|
def max_marginal_relevance_search_by_vector(
|
|
self,
|
|
embedding: List[float],
|
|
k: int = DEFAULT_K,
|
|
fetch_k: int = DEFAULT_FETCH_K,
|
|
lambda_mult: float = 0.5,
|
|
filter: Optional[Dict[str, List]] = None,
|
|
**kwargs: Any,
|
|
) -> List[Document]:
|
|
"""Return docs selected using the maximal marginal relevance.
|
|
Maximal marginal relevance optimizes for similarity to query AND diversity
|
|
among selected documents.
|
|
|
|
Args:
|
|
embedding: Embedding to look up documents similar to.
|
|
k: Number of Documents to return. Defaults to 4.
|
|
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
|
|
lambda_mult: Number between 0 and 1 that determines the degree
|
|
of diversity among the results with 0 corresponding
|
|
to maximum diversity and 1 to minimum diversity.
|
|
Defaults to 0.5.
|
|
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
|
|
|
Returns:
|
|
List of Documents selected by maximal marginal relevance.
|
|
"""
|
|
results = self.query_collection_embeddings(
|
|
query_embeddings=[embedding],
|
|
n_results=fetch_k,
|
|
filter=filter,
|
|
include=["metadatas", "documents", "distances", "embeddings"],
|
|
)
|
|
|
|
embedding_list = [list(_bytes2embedding(result)) for result in results[0][1]]
|
|
|
|
mmr_selected = maximal_marginal_relevance(
|
|
np.array(embedding, dtype=np.float32),
|
|
embedding_list,
|
|
k=k,
|
|
lambda_mult=lambda_mult,
|
|
)
|
|
|
|
candidates = _results_to_docs(results)
|
|
|
|
selected_results = [r for i, r in enumerate(candidates) if i in mmr_selected]
|
|
return selected_results
|
|
|
|
def max_marginal_relevance_search_with_score(
|
|
self,
|
|
query: str,
|
|
k: int = DEFAULT_K,
|
|
fetch_k: int = DEFAULT_FETCH_K,
|
|
lambda_mult: float = 0.5,
|
|
filter: Optional[Dict[str, List]] = None,
|
|
**kwargs: Any,
|
|
) -> List[Tuple[Document, float]]:
|
|
"""Return docs selected using the maximal marginal relevance.
|
|
Maximal marginal relevance optimizes for similarity to query AND diversity
|
|
among selected documents.
|
|
|
|
Args:
|
|
query: Text to look up documents similar to.
|
|
k: Number of Documents to return. Defaults to 4.
|
|
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
|
|
lambda_mult: Number between 0 and 1 that determines the degree
|
|
of diversity among the results with 0 corresponding
|
|
to maximum diversity and 1 to minimum diversity.
|
|
Defaults to 0.5.
|
|
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
|
|
|
Returns:
|
|
List of Documents selected by maximal marginal relevance.
|
|
"""
|
|
if self.embedding is None:
|
|
raise ValueError(
|
|
"For MMR search, you must specify an embedding function on" "creation."
|
|
)
|
|
|
|
embedding = self._embed_query(query)
|
|
docs = self.max_marginal_relevance_search_with_score_by_vector(
|
|
embedding,
|
|
k,
|
|
fetch_k,
|
|
lambda_mult=lambda_mult,
|
|
filter=filter,
|
|
)
|
|
return docs
|
|
|
|
def max_marginal_relevance_search_with_score_by_vector(
|
|
self,
|
|
embedding: List[float],
|
|
k: int = DEFAULT_K,
|
|
fetch_k: int = DEFAULT_FETCH_K,
|
|
lambda_mult: float = 0.5,
|
|
filter: Optional[Dict[str, List]] = None,
|
|
**kwargs: Any,
|
|
) -> List[Tuple[Document, float]]:
|
|
"""Return docs selected using the maximal marginal relevance.
|
|
Maximal marginal relevance optimizes for similarity to query AND diversity
|
|
among selected documents.
|
|
|
|
Args:
|
|
embedding: Embedding to look up documents similar to.
|
|
k: Number of Documents to return. Defaults to 4.
|
|
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
|
|
lambda_mult: Number between 0 and 1 that determines the degree
|
|
of diversity among the results with 0 corresponding
|
|
to maximum diversity and 1 to minimum diversity.
|
|
Defaults to 0.5.
|
|
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
|
|
|
Returns:
|
|
List of Documents selected by maximal marginal relevance.
|
|
"""
|
|
results = self.query_collection_embeddings(
|
|
query_embeddings=[embedding],
|
|
n_results=fetch_k,
|
|
filter=filter,
|
|
include=["metadatas", "documents", "distances", "embeddings"],
|
|
)
|
|
|
|
embedding_list = [list(_bytes2embedding(result)) for result in results[0][1]]
|
|
|
|
mmr_selected = maximal_marginal_relevance(
|
|
np.array(embedding, dtype=np.float32),
|
|
embedding_list,
|
|
k=k,
|
|
lambda_mult=lambda_mult,
|
|
)
|
|
|
|
candidates = _results_to_docs_and_scores(results)
|
|
|
|
selected_results = [
|
|
(r, s) for i, (r, s) in enumerate(candidates) if i in mmr_selected
|
|
]
|
|
return selected_results
|
|
|
|
def query_collection_embeddings(
|
|
self,
|
|
query_embeddings: Optional[List[List[float]]] = None,
|
|
collection_name: Optional[str] = None,
|
|
n_results: int = DEFAULT_K,
|
|
fetch_k: int = DEFAULT_FETCH_K,
|
|
filter: Union[None, Dict[str, Any]] = None,
|
|
results: Union[None, Dict[str, Any]] = None,
|
|
normalize_distance: bool = False,
|
|
**kwargs: Any,
|
|
) -> List[Tuple[Dict[str, Any], List]]:
|
|
all_responses: List[Any] = []
|
|
|
|
if collection_name is None:
|
|
collection_name = self._collection_name
|
|
|
|
if query_embeddings is None:
|
|
return all_responses
|
|
|
|
include = kwargs.get("include", ["metadatas"])
|
|
if results is None and "metadatas" in include:
|
|
results = {
|
|
"list": self.collection_properties,
|
|
"blob": "embeddings" in include,
|
|
}
|
|
|
|
for qemb in query_embeddings:
|
|
response, response_array = self.get_descriptor_response(
|
|
"FindDescriptor",
|
|
collection_name,
|
|
k_neighbors=n_results,
|
|
fetch_k=fetch_k,
|
|
constraints=filter,
|
|
results=results,
|
|
normalize_distance=normalize_distance,
|
|
query_embedding=qemb,
|
|
)
|
|
all_responses.append([response, response_array])
|
|
|
|
return all_responses
|
|
|
|
def similarity_search(
|
|
self,
|
|
query: str,
|
|
k: int = DEFAULT_K,
|
|
fetch_k: int = DEFAULT_FETCH_K,
|
|
filter: Optional[Dict[str, List]] = None,
|
|
**kwargs: Any,
|
|
) -> List[Document]:
|
|
"""Run similarity search with VDMS.
|
|
|
|
Args:
|
|
query (str): Query text to search for.
|
|
k (int): Number of results to return. Defaults to 3.
|
|
fetch_k (int): Number of candidates to fetch for knn (>= k).
|
|
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
|
|
|
Returns:
|
|
List[Document]: List of documents most similar to the query text.
|
|
"""
|
|
docs_and_scores = self.similarity_search_with_score(
|
|
query, k, fetch_k, filter=filter, **kwargs
|
|
)
|
|
return [doc for doc, _ in docs_and_scores]
|
|
|
|
def similarity_search_by_vector(
|
|
self,
|
|
embedding: List[float],
|
|
k: int = DEFAULT_K,
|
|
fetch_k: int = DEFAULT_FETCH_K,
|
|
filter: Optional[Dict[str, List]] = None,
|
|
**kwargs: Any,
|
|
) -> List[Document]:
|
|
"""Return docs most similar to embedding vector.
|
|
Args:
|
|
embedding (List[float]): Embedding to look up documents similar to.
|
|
k (int): Number of Documents to return. Defaults to 3.
|
|
fetch_k (int): Number of candidates to fetch for knn (>= k).
|
|
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
|
Returns:
|
|
List of Documents most similar to the query vector.
|
|
"""
|
|
results = self.query_collection_embeddings(
|
|
query_embeddings=[embedding],
|
|
n_results=k,
|
|
fetch_k=fetch_k,
|
|
filter=filter,
|
|
**kwargs,
|
|
)
|
|
|
|
return _results_to_docs(results)
|
|
|
|
def similarity_search_with_score(
|
|
self,
|
|
query: str,
|
|
k: int = DEFAULT_K,
|
|
fetch_k: int = DEFAULT_FETCH_K,
|
|
filter: Optional[Dict[str, List]] = None,
|
|
**kwargs: Any,
|
|
) -> List[Tuple[Document, float]]:
|
|
"""Run similarity search with VDMS with distance.
|
|
|
|
Args:
|
|
query (str): Query text to search for.
|
|
k (int): Number of results to return. Defaults to 3.
|
|
fetch_k (int): Number of candidates to fetch for knn (>= k).
|
|
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
|
|
|
Returns:
|
|
List[Tuple[Document, float]]: List of documents most similar to
|
|
the query text and cosine distance in float for each.
|
|
Lower score represents more similarity.
|
|
"""
|
|
if self.embedding is None:
|
|
raise ValueError("Must provide embedding function")
|
|
else:
|
|
query_embedding: List[float] = self._embed_query(query)
|
|
results = self.query_collection_embeddings(
|
|
query_embeddings=[query_embedding],
|
|
n_results=k,
|
|
fetch_k=fetch_k,
|
|
filter=filter,
|
|
**kwargs,
|
|
)
|
|
|
|
return _results_to_docs_and_scores(results)
|
|
|
|
def similarity_search_with_score_by_vector(
|
|
self,
|
|
embedding: List[float],
|
|
k: int = DEFAULT_K,
|
|
fetch_k: int = DEFAULT_FETCH_K,
|
|
filter: Optional[Dict[str, List]] = None,
|
|
**kwargs: Any,
|
|
) -> List[Tuple[Document, float]]:
|
|
"""
|
|
Return docs most similar to embedding vector and similarity score.
|
|
|
|
Args:
|
|
embedding (List[float]): Embedding to look up documents similar to.
|
|
k (int): Number of Documents to return. Defaults to 3.
|
|
fetch_k (int): Number of candidates to fetch for knn (>= k).
|
|
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
|
|
|
Returns:
|
|
List[Tuple[Document, float]]: List of documents most similar to
|
|
the query text and cosine distance in float for each.
|
|
Lower score represents more similarity.
|
|
"""
|
|
kwargs["normalize_distance"] = True
|
|
|
|
results = self.query_collection_embeddings(
|
|
query_embeddings=[embedding],
|
|
n_results=k,
|
|
fetch_k=fetch_k,
|
|
filter=filter,
|
|
**kwargs,
|
|
)
|
|
return _results_to_docs_and_scores(results)
|
|
|
|
def update_document(
|
|
self, collection_name: str, document_id: str, document: Document
|
|
) -> None:
|
|
"""Update a document in the collection.
|
|
|
|
Args:
|
|
document_id (str): ID of the document to update.
|
|
document (Document): Document to update.
|
|
"""
|
|
return self.update_documents(collection_name, [document_id], [document])
|
|
|
|
def update_documents(
|
|
self, collection_name: str, ids: List[str], documents: List[Document]
|
|
) -> None:
|
|
"""Update a document in the collection.
|
|
|
|
Args:
|
|
ids (List[str]): List of ids of the document to update.
|
|
documents (List[Document]): List of documents to update.
|
|
"""
|
|
text = [document.page_content for document in documents]
|
|
metadata = [
|
|
_validate_vdms_properties(document.metadata) for document in documents
|
|
]
|
|
embeddings = self._embed_documents(text)
|
|
|
|
self.__update(
|
|
collection_name,
|
|
ids,
|
|
metadatas=metadata,
|
|
embeddings=embeddings,
|
|
documents=text,
|
|
)
|
|
|
|
|
|
# VDMS UTILITY
|
|
|
|
|
|
def _results_to_docs(results: Any) -> List[Document]:
|
|
return [doc for doc, _ in _results_to_docs_and_scores(results)]
|
|
|
|
|
|
def _results_to_docs_and_scores(results: Any) -> List[Tuple[Document, float]]:
|
|
final_res: List[Any] = []
|
|
responses, blobs = results[0]
|
|
if (
|
|
"FindDescriptor" in responses[0]
|
|
and "entities" in responses[0]["FindDescriptor"]
|
|
):
|
|
result_entities = responses[0]["FindDescriptor"]["entities"]
|
|
# result_blobs = blobs
|
|
for ent in result_entities:
|
|
distance = ent["_distance"]
|
|
txt_contents = ent["content"]
|
|
for p in INVALID_DOC_METADATA_KEYS:
|
|
if p in ent:
|
|
del ent[p]
|
|
props = {
|
|
mkey: mval
|
|
for mkey, mval in ent.items()
|
|
if mval not in INVALID_METADATA_VALUE
|
|
}
|
|
|
|
final_res.append(
|
|
(Document(page_content=txt_contents, metadata=props), distance)
|
|
)
|
|
return final_res
|
|
|
|
|
|
def _add_descriptor(
|
|
command_str: str,
|
|
setname: str,
|
|
label: Optional[str] = None,
|
|
ref: Optional[int] = None,
|
|
props: Optional[dict] = None,
|
|
link: Optional[dict] = None,
|
|
k_neighbors: Optional[int] = None,
|
|
constraints: Optional[dict] = None,
|
|
results: Optional[dict] = None,
|
|
) -> Dict[str, Dict[str, Any]]:
|
|
entity: Dict[str, Any] = {"set": setname}
|
|
|
|
if "Add" in command_str and label:
|
|
entity["label"] = label
|
|
|
|
if ref is not None:
|
|
entity["_ref"] = ref
|
|
|
|
if props not in INVALID_METADATA_VALUE:
|
|
entity["properties"] = props
|
|
|
|
if "Add" in command_str and link is not None:
|
|
entity["link"] = link
|
|
|
|
if "Find" in command_str and k_neighbors is not None:
|
|
entity["k_neighbors"] = int(k_neighbors)
|
|
|
|
if "Find" in command_str and constraints not in INVALID_METADATA_VALUE:
|
|
entity["constraints"] = constraints
|
|
|
|
if "Find" in command_str and results not in INVALID_METADATA_VALUE:
|
|
entity["results"] = results
|
|
|
|
query = {command_str: entity}
|
|
return query
|
|
|
|
|
|
def _add_descriptorset(
|
|
command_str: str,
|
|
name: str,
|
|
num_dims: Optional[int] = None,
|
|
engine: Optional[str] = None,
|
|
metric: Optional[str] = None,
|
|
ref: Optional[int] = None,
|
|
props: Optional[Dict] = None,
|
|
link: Optional[Dict] = None,
|
|
storeIndex: bool = False,
|
|
constraints: Optional[Dict] = None,
|
|
results: Optional[Dict] = None,
|
|
) -> Dict[str, Any]:
|
|
if command_str == "AddDescriptorSet" and all(
|
|
var is not None for var in [name, num_dims]
|
|
):
|
|
entity: Dict[str, Any] = {
|
|
"name": name,
|
|
"dimensions": num_dims,
|
|
}
|
|
|
|
if engine is not None:
|
|
entity["engine"] = engine
|
|
|
|
if metric is not None:
|
|
entity["metric"] = metric
|
|
|
|
if ref is not None:
|
|
entity["_ref"] = ref
|
|
|
|
if props not in [None, {}]:
|
|
entity["properties"] = props
|
|
|
|
if link is not None:
|
|
entity["link"] = link
|
|
|
|
elif command_str == "FindDescriptorSet":
|
|
entity = {"set": name}
|
|
|
|
if storeIndex:
|
|
entity["storeIndex"] = storeIndex
|
|
|
|
if constraints not in [None, {}]:
|
|
entity["constraints"] = constraints
|
|
|
|
if results is not None:
|
|
entity["results"] = results
|
|
|
|
else:
|
|
raise ValueError(f"Unknown command: {command_str}")
|
|
|
|
query = {command_str: entity}
|
|
return query
|
|
|
|
|
|
def _add_entity_with_blob(
|
|
collection_name: str, all_properties: List
|
|
) -> Tuple[Dict[str, Any], bytes]:
|
|
all_properties_str = ",".join(all_properties) if len(all_properties) > 0 else ""
|
|
|
|
querytype = "AddEntity"
|
|
entity: Dict[str, Any] = {}
|
|
entity["class"] = "properties"
|
|
entity["blob"] = True # New
|
|
|
|
props: Dict[str, Any] = {"name": collection_name}
|
|
props["type"] = "queryable properties"
|
|
props["content"] = all_properties_str
|
|
entity["properties"] = props
|
|
|
|
byte_data = _str2bytes(all_properties_str)
|
|
|
|
query: Dict[str, Any] = {}
|
|
query[querytype] = entity
|
|
return query, byte_data
|
|
|
|
|
|
def _build_property_query(
|
|
collection_name: str,
|
|
command_type: str = "find",
|
|
all_properties: List = [],
|
|
ref: Optional[int] = None,
|
|
) -> Tuple[Any, Any]:
|
|
all_queries: List[Any] = []
|
|
blob_arr: List[Any] = []
|
|
|
|
choices = ["find", "add", "update"]
|
|
if command_type.lower() not in choices:
|
|
raise ValueError("[!] Invalid type. Choices are : {}".format(",".join(choices)))
|
|
|
|
if command_type.lower() == "find":
|
|
query = _find_property_entity(collection_name, unique_entity=True)
|
|
all_queries.append(query)
|
|
|
|
elif command_type.lower() == "add":
|
|
query, byte_data = _add_entity_with_blob(collection_name, all_properties)
|
|
all_queries.append(query)
|
|
blob_arr.append(byte_data)
|
|
|
|
elif command_type.lower() == "update":
|
|
# Find & Delete
|
|
query = _find_property_entity(collection_name, deletion=True)
|
|
all_queries.append(query)
|
|
|
|
# Add
|
|
query, byte_data = _add_entity_with_blob(collection_name, all_properties)
|
|
all_queries.append(query)
|
|
blob_arr.append(byte_data)
|
|
|
|
return all_queries, blob_arr
|
|
|
|
|
|
def _bytes2embedding(blob: bytes) -> Any:
|
|
emb = np.frombuffer(blob, dtype="float32")
|
|
return emb
|
|
|
|
|
|
def _bytes2str(in_bytes: bytes) -> str:
|
|
return in_bytes.decode()
|
|
|
|
|
|
def _get_cmds_from_query(all_queries: list) -> List[str]:
|
|
return list(set([k for q in all_queries for k in q.keys()]))
|
|
|
|
|
|
def _check_valid_response(all_queries: List[dict], response: Any) -> bool:
|
|
cmd_list = _get_cmds_from_query(all_queries)
|
|
valid_res = isinstance(response, list) and any(
|
|
cmd in response[0]
|
|
and "returned" in response[0][cmd]
|
|
and response[0][cmd]["returned"] > 0
|
|
for cmd in cmd_list
|
|
)
|
|
return valid_res
|
|
|
|
|
|
def _check_descriptor_exists_by_id(
|
|
client: vdms.vdms,
|
|
setname: str,
|
|
id: str,
|
|
) -> Tuple[bool, Any]:
|
|
constraints = {"id": ["==", id]}
|
|
findDescriptor = _add_descriptor(
|
|
"FindDescriptor",
|
|
setname,
|
|
constraints=constraints,
|
|
results={"list": ["id"], "count": ""},
|
|
)
|
|
all_queries = [findDescriptor]
|
|
res, _ = client.query(all_queries)
|
|
|
|
valid_res = _check_valid_response(all_queries, res)
|
|
return valid_res, findDescriptor
|
|
|
|
|
|
def embedding2bytes(embedding: Union[List[float], None]) -> Union[bytes, None]:
|
|
"""Convert embedding to bytes."""
|
|
|
|
blob = None
|
|
if embedding is not None:
|
|
emb = np.array(embedding, dtype="float32")
|
|
blob = emb.tobytes()
|
|
return blob
|
|
|
|
|
|
def _find_property_entity(
|
|
collection_name: str,
|
|
unique_entity: Optional[bool] = False,
|
|
deletion: Optional[bool] = False,
|
|
) -> Dict[str, Dict[str, Any]]:
|
|
querytype = "FindEntity"
|
|
entity: Dict[str, Any] = {}
|
|
entity["class"] = "properties"
|
|
if unique_entity:
|
|
entity["unique"] = unique_entity
|
|
|
|
results: Dict[str, Any] = {}
|
|
results["blob"] = True
|
|
results["count"] = ""
|
|
results["list"] = ["content"]
|
|
entity["results"] = results
|
|
|
|
constraints: Dict[str, Any] = {}
|
|
if deletion:
|
|
constraints["_deletion"] = ["==", 1]
|
|
constraints["name"] = ["==", collection_name]
|
|
entity["constraints"] = constraints
|
|
|
|
query: Dict[str, Any] = {}
|
|
query[querytype] = entity
|
|
return query
|
|
|
|
|
|
def _str2bytes(in_str: str) -> bytes:
|
|
return str.encode(in_str)
|
|
|
|
|
|
def _validate_vdms_properties(metadata: Dict[str, Any]) -> Dict:
|
|
new_metadata: Dict[str, Any] = {}
|
|
for key, value in metadata.items():
|
|
if not isinstance(value, list):
|
|
new_metadata[str(key)] = value
|
|
return new_metadata
|