mirror of
https://github.com/hwchase17/langchain
synced 2024-10-29 17:07:25 +00:00
88a8f59aa7
Hi there!
I'm excited to open this PR to add support for using a fully Postgres
syntax compatible database 'AnalyticDB' as a vector.
As AnalyticDB has been proved can be used with AutoGPT,
ChatGPT-Retrieve-Plugin, and LLama-Index, I think it is also good for
you.
AnalyticDB is a distributed Alibaba Cloud-Native vector database. It
works better when data comes to large scale. The PR includes:
- [x] A new memory: AnalyticDBVector
- [x] A suite of integration tests verifies the AnalyticDB integration
I have read your [contributing
guidelines](72b7d76d79/.github/CONTRIBUTING.md
).
And I have passed the tests below
- [x] make format
- [x] make lint
- [x] make coverage
- [x] make test
149 lines
5.3 KiB
Python
149 lines
5.3 KiB
Python
"""Test PGVector functionality."""
|
|
import os
|
|
from typing import List
|
|
|
|
from sqlalchemy.orm import Session
|
|
|
|
from langchain.docstore.document import Document
|
|
from langchain.vectorstores.analyticdb import AnalyticDB
|
|
from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings
|
|
|
|
CONNECTION_STRING = AnalyticDB.connection_string_from_db_params(
|
|
driver=os.environ.get("PG_DRIVER", "psycopg2cffi"),
|
|
host=os.environ.get("PG_HOST", "localhost"),
|
|
port=int(os.environ.get("PG_HOST", "5432")),
|
|
database=os.environ.get("PG_DATABASE", "postgres"),
|
|
user=os.environ.get("PG_USER", "postgres"),
|
|
password=os.environ.get("PG_PASSWORD", "postgres"),
|
|
)
|
|
|
|
|
|
ADA_TOKEN_COUNT = 1536
|
|
|
|
|
|
class FakeEmbeddingsWithAdaDimension(FakeEmbeddings):
|
|
"""Fake embeddings functionality for testing."""
|
|
|
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
|
"""Return simple embeddings."""
|
|
return [
|
|
[float(1.0)] * (ADA_TOKEN_COUNT - 1) + [float(i)] for i in range(len(texts))
|
|
]
|
|
|
|
def embed_query(self, text: str) -> List[float]:
|
|
"""Return simple embeddings."""
|
|
return [float(1.0)] * (ADA_TOKEN_COUNT - 1) + [float(0.0)]
|
|
|
|
|
|
def test_analyticdb() -> None:
|
|
"""Test end to end construction and search."""
|
|
texts = ["foo", "bar", "baz"]
|
|
docsearch = AnalyticDB.from_texts(
|
|
texts=texts,
|
|
collection_name="test_collection",
|
|
embedding=FakeEmbeddingsWithAdaDimension(),
|
|
connection_string=CONNECTION_STRING,
|
|
pre_delete_collection=True,
|
|
)
|
|
output = docsearch.similarity_search("foo", k=1)
|
|
assert output == [Document(page_content="foo")]
|
|
|
|
|
|
def test_analyticdb_with_metadatas() -> None:
|
|
"""Test end to end construction and search."""
|
|
texts = ["foo", "bar", "baz"]
|
|
metadatas = [{"page": str(i)} for i in range(len(texts))]
|
|
docsearch = AnalyticDB.from_texts(
|
|
texts=texts,
|
|
collection_name="test_collection",
|
|
embedding=FakeEmbeddingsWithAdaDimension(),
|
|
metadatas=metadatas,
|
|
connection_string=CONNECTION_STRING,
|
|
pre_delete_collection=True,
|
|
)
|
|
output = docsearch.similarity_search("foo", k=1)
|
|
assert output == [Document(page_content="foo", metadata={"page": "0"})]
|
|
|
|
|
|
def test_analyticdb_with_metadatas_with_scores() -> None:
|
|
"""Test end to end construction and search."""
|
|
texts = ["foo", "bar", "baz"]
|
|
metadatas = [{"page": str(i)} for i in range(len(texts))]
|
|
docsearch = AnalyticDB.from_texts(
|
|
texts=texts,
|
|
collection_name="test_collection",
|
|
embedding=FakeEmbeddingsWithAdaDimension(),
|
|
metadatas=metadatas,
|
|
connection_string=CONNECTION_STRING,
|
|
pre_delete_collection=True,
|
|
)
|
|
output = docsearch.similarity_search_with_score("foo", k=1)
|
|
assert output == [(Document(page_content="foo", metadata={"page": "0"}), 0.0)]
|
|
|
|
|
|
def test_analyticdb_with_filter_match() -> None:
|
|
"""Test end to end construction and search."""
|
|
texts = ["foo", "bar", "baz"]
|
|
metadatas = [{"page": str(i)} for i in range(len(texts))]
|
|
docsearch = AnalyticDB.from_texts(
|
|
texts=texts,
|
|
collection_name="test_collection_filter",
|
|
embedding=FakeEmbeddingsWithAdaDimension(),
|
|
metadatas=metadatas,
|
|
connection_string=CONNECTION_STRING,
|
|
pre_delete_collection=True,
|
|
)
|
|
output = docsearch.similarity_search_with_score("foo", k=1, filter={"page": "0"})
|
|
assert output == [(Document(page_content="foo", metadata={"page": "0"}), 0.0)]
|
|
|
|
|
|
def test_analyticdb_with_filter_distant_match() -> None:
|
|
"""Test end to end construction and search."""
|
|
texts = ["foo", "bar", "baz"]
|
|
metadatas = [{"page": str(i)} for i in range(len(texts))]
|
|
docsearch = AnalyticDB.from_texts(
|
|
texts=texts,
|
|
collection_name="test_collection_filter",
|
|
embedding=FakeEmbeddingsWithAdaDimension(),
|
|
metadatas=metadatas,
|
|
connection_string=CONNECTION_STRING,
|
|
pre_delete_collection=True,
|
|
)
|
|
output = docsearch.similarity_search_with_score("foo", k=1, filter={"page": "2"})
|
|
print(output)
|
|
assert output == [(Document(page_content="baz", metadata={"page": "2"}), 4.0)]
|
|
|
|
|
|
def test_analyticdb_with_filter_no_match() -> None:
|
|
"""Test end to end construction and search."""
|
|
texts = ["foo", "bar", "baz"]
|
|
metadatas = [{"page": str(i)} for i in range(len(texts))]
|
|
docsearch = AnalyticDB.from_texts(
|
|
texts=texts,
|
|
collection_name="test_collection_filter",
|
|
embedding=FakeEmbeddingsWithAdaDimension(),
|
|
metadatas=metadatas,
|
|
connection_string=CONNECTION_STRING,
|
|
pre_delete_collection=True,
|
|
)
|
|
output = docsearch.similarity_search_with_score("foo", k=1, filter={"page": "5"})
|
|
assert output == []
|
|
|
|
|
|
def test_analyticdb_collection_with_metadata() -> None:
|
|
"""Test end to end collection construction"""
|
|
pgvector = AnalyticDB(
|
|
collection_name="test_collection",
|
|
collection_metadata={"foo": "bar"},
|
|
embedding_function=FakeEmbeddingsWithAdaDimension(),
|
|
connection_string=CONNECTION_STRING,
|
|
pre_delete_collection=True,
|
|
)
|
|
session = Session(pgvector.connect())
|
|
collection = pgvector.get_collection(session)
|
|
if collection is None:
|
|
assert False, "Expected a CollectionStore object but received None"
|
|
else:
|
|
assert collection.name == "test_collection"
|
|
assert collection.cmetadata == {"foo": "bar"}
|