langchain/libs/community/langchain_community/vectorstores/lancedb.py
Raghav Dixit 9b7fb381a4
community[patch]: LanceDB integration patch update (#20686)
Description : 

- added functionalities - delete, index creation, using existing
connection object etc.
- updated usage 
- Added LaceDB cloud OSS support

make lint_diff , make test checks done
2024-04-24 16:27:43 -07:00

283 lines
9.8 KiB
Python

from __future__ import annotations
import os
import uuid
import warnings
from typing import Any, Iterable, List, Optional
from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.vectorstores import VectorStore
def import_lancedb() -> Any:
try:
import lancedb
except ImportError as e:
raise ImportError(
"Could not import pinecone lancedb package. "
"Please install it with `pip install lancedb`."
) from e
return lancedb
class LanceDB(VectorStore):
"""`LanceDB` vector store.
To use, you should have ``lancedb`` python package installed.
You can install it with ``pip install lancedb``.
Args:
connection: LanceDB connection to use. If not provided, a new connection
will be created.
embedding: Embedding to use for the vectorstore.
vector_key: Key to use for the vector in the database. Defaults to ``vector``.
id_key: Key to use for the id in the database. Defaults to ``id``.
text_key: Key to use for the text in the database. Defaults to ``text``.
table_name: Name of the table to use. Defaults to ``vectorstore``.
api_key: API key to use for LanceDB cloud database.
region: Region to use for LanceDB cloud database.
mode: Mode to use for adding data to the table. Defaults to ``overwrite``.
Example:
.. code-block:: python
vectorstore = LanceDB(uri='/lancedb', embedding_function)
vectorstore.add_texts(['text1', 'text2'])
result = vectorstore.similarity_search('text1')
"""
def __init__(
self,
connection: Optional[Any] = None,
embedding: Optional[Embeddings] = None,
uri: Optional[str] = "/tmp/lancedb",
vector_key: Optional[str] = "vector",
id_key: Optional[str] = "id",
text_key: Optional[str] = "text",
table_name: Optional[str] = "vectorstore",
api_key: Optional[str] = None,
region: Optional[str] = None,
mode: Optional[str] = "overwrite",
):
"""Initialize with Lance DB vectorstore"""
lancedb = import_lancedb()
self._embedding = embedding
self._vector_key = vector_key
self._id_key = id_key
self._text_key = text_key
self._table_name = table_name
self.api_key = api_key or os.getenv("LANCE_API_KEY") if api_key != "" else None
self.region = region
self.mode = mode
if isinstance(uri, str) and self.api_key is None:
if uri.startswith("db://"):
raise ValueError("API key is required for LanceDB cloud.")
if self._embedding is None:
raise ValueError("embedding object should be provided")
if isinstance(connection, lancedb.db.LanceDBConnection):
self._connection = connection
elif isinstance(connection, (str, lancedb.db.LanceTable)):
raise ValueError(
"`connection` has to be a lancedb.db.LanceDBConnection object.\
`lancedb.db.LanceTable` is deprecated."
)
else:
if self.api_key is None:
self._connection = lancedb.connect(uri)
else:
if isinstance(uri, str):
if uri.startswith("db://"):
self._connection = lancedb.connect(
uri, api_key=self.api_key, region=self.region
)
else:
self._connection = lancedb.connect(uri)
warnings.warn(
"api key provided with local uri.\
The data will be stored locally"
)
@property
def embeddings(self) -> Optional[Embeddings]:
return self._embedding
def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
**kwargs: Any,
) -> List[str]:
"""Turn texts into embedding and add it to the database
Args:
texts: Iterable of strings to add to the vectorstore.
metadatas: Optional list of metadatas associated with the texts.
ids: Optional list of ids to associate w ith the texts.
Returns:
List of ids of the added texts.
"""
# Embed texts and create documents
docs = []
ids = ids or [str(uuid.uuid4()) for _ in texts]
embeddings = self._embedding.embed_documents(list(texts)) # type: ignore
for idx, text in enumerate(texts):
embedding = embeddings[idx]
metadata = metadatas[idx] if metadatas else {"id": ids[idx]}
docs.append(
{
self._vector_key: embedding,
self._id_key: ids[idx],
self._text_key: text,
"metadata": metadata,
}
)
if self._table_name in self._connection.table_names():
tbl = self._connection.open_table(self._table_name)
if self.api_key is None:
tbl.add(docs, mode=self.mode)
else:
tbl.add(docs)
else:
self._connection.create_table(self._table_name, data=docs)
return ids
def get_table(self, name: Optional[str] = None) -> Any:
if name is not None:
try:
self._connection.open_table(name)
except Exception:
raise ValueError(f"Table {name} not found in the database")
else:
return self._connection.open_table(self._table_name)
def create_index(
self,
col_name: Optional[str] = None,
vector_col: Optional[str] = None,
num_partitions: Optional[int] = 256,
num_sub_vectors: Optional[int] = 96,
index_cache_size: Optional[int] = None,
) -> None:
"""
Create a scalar(for non-vector cols) or a vector index on a table.
Make sure your vector column has enough data before creating an index on it.
Args:
vector_col: Provide if you want to create index on a vector column.
col_name: Provide if you want to create index on a non-vector column.
metric: Provide the metric to use for vector index. Defaults to 'L2'
choice of metrics: 'L2', 'dot', 'cosine'
Returns:
None
"""
if vector_col:
self._connection.create_index(
vector_column_name=vector_col,
num_partitions=num_partitions,
num_sub_vectors=num_sub_vectors,
index_cache_size=index_cache_size,
)
elif col_name:
self._connection.create_scalar_index(col_name)
else:
raise ValueError("Provide either vector_col or col_name")
def similarity_search(
self, query: str, k: int = 4, name: Optional[str] = None, **kwargs: Any
) -> List[Document]:
"""Return documents most similar to the query
Args:
query: String to query the vectorstore with.
k: Number of documents to return.
Returns:
List of documents most similar to the query.
"""
embedding = self._embedding.embed_query(query) # type: ignore
tbl = self.get_table(name)
docs = (
tbl.search(embedding, vector_column_name=self._vector_key)
.limit(k)
.to_arrow()
)
columns = docs.schema.names
return [
Document(
page_content=docs[self._text_key][idx].as_py(),
metadata={
col: docs[col][idx].as_py()
for col in columns
if col != self._text_key
},
)
for idx in range(len(docs))
]
@classmethod
def from_texts(
cls,
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
connection: Any = None,
vector_key: Optional[str] = "vector",
id_key: Optional[str] = "id",
text_key: Optional[str] = "text",
**kwargs: Any,
) -> LanceDB:
instance = LanceDB(
connection=connection,
embedding=embedding,
vector_key=vector_key,
id_key=id_key,
text_key=text_key,
)
instance.add_texts(texts, metadatas=metadatas, **kwargs)
return instance
def delete(
self,
ids: Optional[List[str]] = None,
delete_all: Optional[bool] = None,
filter: Optional[str] = None,
drop_columns: Optional[List[str]] = None,
name: Optional[str] = None,
**kwargs: Any,
) -> None:
"""
Allows deleting rows by filtering, by ids or drop columns from the table.
Args:
filter: Provide a string SQL expression - "{col} {operation} {value}".
ids: Provide list of ids to delete from the table.
drop_columns: Provide list of columns to drop from the table.
delete_all: If True, delete all rows from the table.
"""
tbl = self.get_table(name)
if filter:
tbl.delete(filter)
elif ids:
tbl.delete("id in ('{}')".format(",".join(ids)))
elif drop_columns:
if self.api_key is not None:
raise NotImplementedError(
"Column operations currently not supported in LanceDB Cloud."
)
else:
tbl.drop_columns(drop_columns)
elif delete_all:
tbl.delete("true")
else:
raise ValueError("Provide either filter, ids, drop_columns or delete_all")