mirror of
https://github.com/hwchase17/langchain
synced 2024-11-04 06:00:26 +00:00
fa5d49f2c1
ran ```bash g grep -l "langchain.vectorstores" | xargs -L 1 sed -i '' "s/langchain\.vectorstores/langchain_community.vectorstores/g" g grep -l "langchain.document_loaders" | xargs -L 1 sed -i '' "s/langchain\.document_loaders/langchain_community.document_loaders/g" g grep -l "langchain.chat_loaders" | xargs -L 1 sed -i '' "s/langchain\.chat_loaders/langchain_community.chat_loaders/g" g grep -l "langchain.document_transformers" | xargs -L 1 sed -i '' "s/langchain\.document_transformers/langchain_community.document_transformers/g" g grep -l "langchain\.graphs" | xargs -L 1 sed -i '' "s/langchain\.graphs/langchain_community.graphs/g" g grep -l "langchain\.memory\.chat_message_histories" | xargs -L 1 sed -i '' "s/langchain\.memory\.chat_message_histories/langchain_community.chat_message_histories/g" gco master libs/langchain/tests/unit_tests/*/test_imports.py gco master libs/langchain/tests/unit_tests/**/test_public_api.py ```
24 lines
691 B
Python
24 lines
691 B
Python
from pathlib import Path
|
|
|
|
from langchain.text_splitter import TokenTextSplitter
|
|
from langchain_community.document_loaders import TextLoader
|
|
from langchain_community.embeddings.openai import OpenAIEmbeddings
|
|
from langchain_community.vectorstores import Neo4jVector
|
|
|
|
txt_path = Path(__file__).parent / "dune.txt"
|
|
|
|
# Load the text file
|
|
loader = TextLoader(str(txt_path))
|
|
raw_documents = loader.load()
|
|
|
|
# Define chunking strategy
|
|
splitter = TokenTextSplitter(chunk_size=512, chunk_overlap=24)
|
|
documents = splitter.split_documents(raw_documents)
|
|
|
|
# Calculate embedding values and store them in the graph
|
|
Neo4jVector.from_documents(
|
|
documents,
|
|
OpenAIEmbeddings(),
|
|
index_name="dune",
|
|
)
|