mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
ed58eeb9c5
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
220 lines
6.8 KiB
Python
220 lines
6.8 KiB
Python
import json
|
|
from typing import Any, AsyncIterator, Dict, Iterator, List, Mapping, Optional
|
|
|
|
import aiohttp
|
|
from langchain_core.callbacks import (
|
|
AsyncCallbackManagerForLLMRun,
|
|
CallbackManagerForLLMRun,
|
|
)
|
|
from langchain_core.language_models.llms import LLM
|
|
from langchain_core.outputs import GenerationChunk
|
|
from langchain_core.pydantic_v1 import Extra, root_validator
|
|
from langchain_core.utils import get_from_dict_or_env
|
|
|
|
from langchain_community.utilities.requests import Requests
|
|
|
|
DEFAULT_MODEL_ID = "google/flan-t5-xl"
|
|
|
|
|
|
class DeepInfra(LLM):
|
|
"""DeepInfra models.
|
|
|
|
To use, you should have the environment variable ``DEEPINFRA_API_TOKEN``
|
|
set with your API token, or pass it as a named parameter to the
|
|
constructor.
|
|
|
|
Only supports `text-generation` and `text2text-generation` for now.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.llms import DeepInfra
|
|
di = DeepInfra(model_id="google/flan-t5-xl",
|
|
deepinfra_api_token="my-api-key")
|
|
"""
|
|
|
|
model_id: str = DEFAULT_MODEL_ID
|
|
model_kwargs: Optional[Dict] = None
|
|
|
|
deepinfra_api_token: Optional[str] = None
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic object."""
|
|
|
|
extra = Extra.forbid
|
|
|
|
@root_validator()
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate that api key and python package exists in environment."""
|
|
deepinfra_api_token = get_from_dict_or_env(
|
|
values, "deepinfra_api_token", "DEEPINFRA_API_TOKEN"
|
|
)
|
|
values["deepinfra_api_token"] = deepinfra_api_token
|
|
return values
|
|
|
|
@property
|
|
def _identifying_params(self) -> Mapping[str, Any]:
|
|
"""Get the identifying parameters."""
|
|
return {
|
|
**{"model_id": self.model_id},
|
|
**{"model_kwargs": self.model_kwargs},
|
|
}
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of llm."""
|
|
return "deepinfra"
|
|
|
|
def _url(self) -> str:
|
|
return f"https://api.deepinfra.com/v1/inference/{self.model_id}"
|
|
|
|
def _headers(self) -> Dict:
|
|
return {
|
|
"Authorization": f"bearer {self.deepinfra_api_token}",
|
|
"Content-Type": "application/json",
|
|
}
|
|
|
|
def _body(self, prompt: str, kwargs: Any) -> Dict:
|
|
model_kwargs = self.model_kwargs or {}
|
|
model_kwargs = {**model_kwargs, **kwargs}
|
|
|
|
return {
|
|
"input": prompt,
|
|
**model_kwargs,
|
|
}
|
|
|
|
def _handle_status(self, code: int, text: Any) -> None:
|
|
if code >= 500:
|
|
raise Exception(f"DeepInfra Server: Error {code}")
|
|
elif code >= 400:
|
|
raise ValueError(f"DeepInfra received an invalid payload: {text}")
|
|
elif code != 200:
|
|
raise Exception(
|
|
f"DeepInfra returned an unexpected response with status "
|
|
f"{code}: {text}"
|
|
)
|
|
|
|
def _call(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> str:
|
|
"""Call out to DeepInfra's inference API endpoint.
|
|
|
|
Args:
|
|
prompt: The prompt to pass into the model.
|
|
stop: Optional list of stop words to use when generating.
|
|
|
|
Returns:
|
|
The string generated by the model.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
response = di("Tell me a joke.")
|
|
"""
|
|
|
|
request = Requests(headers=self._headers())
|
|
response = request.post(url=self._url(), data=self._body(prompt, kwargs))
|
|
|
|
self._handle_status(response.status_code, response.text)
|
|
data = response.json()
|
|
|
|
return data["results"][0]["generated_text"]
|
|
|
|
async def _acall(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> str:
|
|
request = Requests(headers=self._headers())
|
|
async with request.apost(
|
|
url=self._url(), data=self._body(prompt, kwargs)
|
|
) as response:
|
|
self._handle_status(response.status, response.text)
|
|
data = await response.json()
|
|
return data["results"][0]["generated_text"]
|
|
|
|
def _stream(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> Iterator[GenerationChunk]:
|
|
request = Requests(headers=self._headers())
|
|
response = request.post(
|
|
url=self._url(), data=self._body(prompt, {**kwargs, "stream": True})
|
|
)
|
|
|
|
self._handle_status(response.status_code, response.text)
|
|
for line in _parse_stream(response.iter_lines()):
|
|
chunk = _handle_sse_line(line)
|
|
if chunk:
|
|
yield chunk
|
|
if run_manager:
|
|
run_manager.on_llm_new_token(chunk.text)
|
|
|
|
async def _astream(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> AsyncIterator[GenerationChunk]:
|
|
request = Requests(headers=self._headers())
|
|
async with request.apost(
|
|
url=self._url(), data=self._body(prompt, {**kwargs, "stream": True})
|
|
) as response:
|
|
self._handle_status(response.status, response.text)
|
|
async for line in _parse_stream_async(response.content):
|
|
chunk = _handle_sse_line(line)
|
|
if chunk:
|
|
yield chunk
|
|
if run_manager:
|
|
await run_manager.on_llm_new_token(chunk.text)
|
|
|
|
|
|
def _parse_stream(rbody: Iterator[bytes]) -> Iterator[str]:
|
|
for line in rbody:
|
|
_line = _parse_stream_helper(line)
|
|
if _line is not None:
|
|
yield _line
|
|
|
|
|
|
async def _parse_stream_async(rbody: aiohttp.StreamReader) -> AsyncIterator[str]:
|
|
async for line in rbody:
|
|
_line = _parse_stream_helper(line)
|
|
if _line is not None:
|
|
yield _line
|
|
|
|
|
|
def _parse_stream_helper(line: bytes) -> Optional[str]:
|
|
if line and line.startswith(b"data:"):
|
|
if line.startswith(b"data: "):
|
|
# SSE event may be valid when it contain whitespace
|
|
line = line[len(b"data: ") :]
|
|
else:
|
|
line = line[len(b"data:") :]
|
|
if line.strip() == b"[DONE]":
|
|
# return here will cause GeneratorExit exception in urllib3
|
|
# and it will close http connection with TCP Reset
|
|
return None
|
|
else:
|
|
return line.decode("utf-8")
|
|
return None
|
|
|
|
|
|
def _handle_sse_line(line: str) -> Optional[GenerationChunk]:
|
|
try:
|
|
obj = json.loads(line)
|
|
return GenerationChunk(
|
|
text=obj.get("token", {}).get("text"),
|
|
)
|
|
except Exception:
|
|
return None
|