mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
bb7ac9edb5
#### What I do Adding embedding api for [DashScope](https://help.aliyun.com/product/610100.html), which is the DAMO Academy's multilingual text unified vector model based on the LLM base. It caters to multiple mainstream languages worldwide and offers high-quality vector services, helping developers quickly transform text data into high-quality vector data. Currently supported languages include Chinese, English, Spanish, French, Portuguese, Indonesian, and more. #### Who can review? Models - @hwchase17 - @agola11 --------- Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
56 lines
1.8 KiB
Python
56 lines
1.8 KiB
Python
"""Test dashscope embeddings."""
|
|
import numpy as np
|
|
|
|
from langchain.embeddings.dashscope import DashScopeEmbeddings
|
|
|
|
|
|
def test_dashscope_embedding_documents() -> None:
|
|
"""Test dashscope embeddings."""
|
|
documents = ["foo bar"]
|
|
embedding = DashScopeEmbeddings(model="text-embedding-v1")
|
|
output = embedding.embed_documents(documents)
|
|
assert len(output) == 1
|
|
assert len(output[0]) == 1536
|
|
|
|
|
|
def test_dashscope_embedding_documents_multiple() -> None:
|
|
"""Test dashscope embeddings."""
|
|
documents = ["foo bar", "bar foo", "foo"]
|
|
embedding = DashScopeEmbeddings(model="text-embedding-v1")
|
|
output = embedding.embed_documents(documents)
|
|
assert len(output) == 3
|
|
assert len(output[0]) == 1536
|
|
assert len(output[1]) == 1536
|
|
assert len(output[2]) == 1536
|
|
|
|
|
|
def test_dashscope_embedding_query() -> None:
|
|
"""Test dashscope embeddings."""
|
|
document = "foo bar"
|
|
embedding = DashScopeEmbeddings(model="text-embedding-v1")
|
|
output = embedding.embed_query(document)
|
|
assert len(output) == 1536
|
|
|
|
|
|
def test_dashscope_embedding_with_empty_string() -> None:
|
|
"""Test dashscope embeddings with empty string."""
|
|
import dashscope
|
|
|
|
document = ["", "abc"]
|
|
embedding = DashScopeEmbeddings(model="text-embedding-v1")
|
|
output = embedding.embed_documents(document)
|
|
assert len(output) == 2
|
|
assert len(output[0]) == 1536
|
|
expected_output = dashscope.TextEmbedding.call(
|
|
input="", model="text-embedding-v1", text_type="document"
|
|
).output["embeddings"][0]["embedding"]
|
|
assert np.allclose(output[0], expected_output)
|
|
assert len(output[1]) == 1536
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_dashscope_embedding_documents()
|
|
test_dashscope_embedding_documents_multiple()
|
|
test_dashscope_embedding_query()
|
|
test_dashscope_embedding_with_empty_string()
|