langchain/libs/partners/mongodb
Charlie Marsh fd94aa8366
partner[patch]: Upgrade to Ruff v0.4.2 (#21108)
## Summary

No new diagnostics (given that the set of enabled rules hasn't changed),
but gains access to our new parser (much faster) and reduced false
positives all around.
2024-04-30 15:06:42 -04:00
..
langchain_mongodb community[patch], mongodb[patch]: Stop spamming SIMD import warnings (#19531) 2024-03-28 03:11:02 +00:00
scripts
tests mongodb[patch]: Added scoring threshold to caching (#19286) 2024-03-19 11:30:02 -07:00
.gitignore
LICENSE
Makefile
poetry.lock mongodb[patch]: fix core dep (#18926) 2024-03-11 10:27:29 -07:00
pyproject.toml partner[patch]: Upgrade to Ruff v0.4.2 (#21108) 2024-04-30 15:06:42 -04:00
README.md

langchain-mongodb

Installation

pip install -U langchain-mongodb

Usage

Using MongoDBAtlasVectorSearch

from langchain_mongodb import MongoDBAtlasVectorSearch

# Pull MongoDB Atlas URI from environment variables
MONGODB_ATLAS_CLUSTER_URI = os.environ.get("MONGODB_ATLAS_CLUSTER_URI")

DB_NAME = "langchain_db"
COLLECTION_NAME = "test"
ATLAS_VECTOR_SEARCH_INDEX_NAME = "index_name"
MONGODB_COLLECTION = client[DB_NAME][COLLECITON_NAME]

# Create the vector search via `from_connection_string`
vector_search = MongoDBAtlasVectorSearch.from_connection_string(
    MONGODB_ATLAS_CLUSTER_URI,
    DB_NAME + "." + COLLECTION_NAME,
    OpenAIEmbeddings(disallowed_special=()),
    index_name=ATLAS_VECTOR_SEARCH_INDEX_NAME,
)

# Initialize MongoDB python client
client = MongoClient(MONGODB_ATLAS_CLUSTER_URI)
# Create the vector search via instantiation
vector_search_2 = MongoDBAtlasVectorSearch(
    collection=MONGODB_COLLECTION,
    embeddings=OpenAIEmbeddings(disallowed_special=()),
    index_name=ATLAS_VECTOR_SEARCH_INDEX_NAME,
)