langchain/libs/experimental/langchain_experimental/rl_chain/__init__.py
Leonid Ganeline 4159a4723c
experimental[patch]: update module doc strings (#19539)
Added missed module descriptions. Fixed format.
2024-03-26 10:38:10 -04:00

64 lines
1.4 KiB
Python

"""
**RL (Reinforcement Learning) Chain** leverages the `Vowpal Wabbit (VW)` models
for reinforcement learning with a context, with the goal of modifying
the prompt before the LLM call.
[Vowpal Wabbit](https://vowpalwabbit.org/) provides fast, efficient,
and flexible online machine learning techniques for reinforcement learning,
supervised learning, and more.
"""
import logging
from langchain_experimental.rl_chain.base import (
AutoSelectionScorer,
BasedOn,
Embed,
Embedder,
Policy,
SelectionScorer,
ToSelectFrom,
VwPolicy,
embed,
stringify_embedding,
)
from langchain_experimental.rl_chain.pick_best_chain import (
PickBest,
PickBestEvent,
PickBestFeatureEmbedder,
PickBestRandomPolicy,
PickBestSelected,
)
def configure_logger() -> None:
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
ch = logging.StreamHandler()
formatter = logging.Formatter(
"%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
ch.setFormatter(formatter)
ch.setLevel(logging.INFO)
logger.addHandler(ch)
configure_logger()
__all__ = [
"PickBest",
"PickBestEvent",
"PickBestSelected",
"PickBestFeatureEmbedder",
"PickBestRandomPolicy",
"Embed",
"BasedOn",
"ToSelectFrom",
"SelectionScorer",
"AutoSelectionScorer",
"Embedder",
"Policy",
"VwPolicy",
"embed",
"stringify_embedding",
]