mirror of
https://github.com/hwchase17/langchain
synced 2024-11-08 07:10:35 +00:00
3cd7fced5f
Migrates memory implementations to community
141 lines
5.5 KiB
Python
141 lines
5.5 KiB
Python
from typing import Any, Dict, List, Type, Union
|
|
|
|
from langchain_core.language_models import BaseLanguageModel
|
|
from langchain_core.messages import BaseMessage, SystemMessage, get_buffer_string
|
|
from langchain_core.prompts import BasePromptTemplate
|
|
from langchain_core.pydantic_v1 import Field
|
|
|
|
from langchain_community.graphs import NetworkxEntityGraph
|
|
from langchain_community.graphs.networkx_graph import (
|
|
KnowledgeTriple,
|
|
get_entities,
|
|
parse_triples,
|
|
)
|
|
|
|
try:
|
|
from langchain.chains.llm import LLMChain
|
|
from langchain.memory.chat_memory import BaseChatMemory
|
|
from langchain.memory.prompt import (
|
|
ENTITY_EXTRACTION_PROMPT,
|
|
KNOWLEDGE_TRIPLE_EXTRACTION_PROMPT,
|
|
)
|
|
from langchain.memory.utils import get_prompt_input_key
|
|
|
|
class ConversationKGMemory(BaseChatMemory):
|
|
"""Knowledge graph conversation memory.
|
|
|
|
Integrates with external knowledge graph to store and retrieve
|
|
information about knowledge triples in the conversation.
|
|
"""
|
|
|
|
k: int = 2
|
|
human_prefix: str = "Human"
|
|
ai_prefix: str = "AI"
|
|
kg: NetworkxEntityGraph = Field(default_factory=NetworkxEntityGraph)
|
|
knowledge_extraction_prompt: BasePromptTemplate = (
|
|
KNOWLEDGE_TRIPLE_EXTRACTION_PROMPT
|
|
)
|
|
entity_extraction_prompt: BasePromptTemplate = ENTITY_EXTRACTION_PROMPT
|
|
llm: BaseLanguageModel
|
|
summary_message_cls: Type[BaseMessage] = SystemMessage
|
|
"""Number of previous utterances to include in the context."""
|
|
memory_key: str = "history" #: :meta private:
|
|
|
|
def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
|
|
"""Return history buffer."""
|
|
entities = self._get_current_entities(inputs)
|
|
|
|
summary_strings = []
|
|
for entity in entities:
|
|
knowledge = self.kg.get_entity_knowledge(entity)
|
|
if knowledge:
|
|
summary = f"On {entity}: {'. '.join(knowledge)}."
|
|
summary_strings.append(summary)
|
|
context: Union[str, List]
|
|
if not summary_strings:
|
|
context = [] if self.return_messages else ""
|
|
elif self.return_messages:
|
|
context = [
|
|
self.summary_message_cls(content=text) for text in summary_strings
|
|
]
|
|
else:
|
|
context = "\n".join(summary_strings)
|
|
|
|
return {self.memory_key: context}
|
|
|
|
@property
|
|
def memory_variables(self) -> List[str]:
|
|
"""Will always return list of memory variables.
|
|
|
|
:meta private:
|
|
"""
|
|
return [self.memory_key]
|
|
|
|
def _get_prompt_input_key(self, inputs: Dict[str, Any]) -> str:
|
|
"""Get the input key for the prompt."""
|
|
if self.input_key is None:
|
|
return get_prompt_input_key(inputs, self.memory_variables)
|
|
return self.input_key
|
|
|
|
def _get_prompt_output_key(self, outputs: Dict[str, Any]) -> str:
|
|
"""Get the output key for the prompt."""
|
|
if self.output_key is None:
|
|
if len(outputs) != 1:
|
|
raise ValueError(f"One output key expected, got {outputs.keys()}")
|
|
return list(outputs.keys())[0]
|
|
return self.output_key
|
|
|
|
def get_current_entities(self, input_string: str) -> List[str]:
|
|
chain = LLMChain(llm=self.llm, prompt=self.entity_extraction_prompt)
|
|
buffer_string = get_buffer_string(
|
|
self.chat_memory.messages[-self.k * 2 :],
|
|
human_prefix=self.human_prefix,
|
|
ai_prefix=self.ai_prefix,
|
|
)
|
|
output = chain.predict(
|
|
history=buffer_string,
|
|
input=input_string,
|
|
)
|
|
return get_entities(output)
|
|
|
|
def _get_current_entities(self, inputs: Dict[str, Any]) -> List[str]:
|
|
"""Get the current entities in the conversation."""
|
|
prompt_input_key = self._get_prompt_input_key(inputs)
|
|
return self.get_current_entities(inputs[prompt_input_key])
|
|
|
|
def get_knowledge_triplets(self, input_string: str) -> List[KnowledgeTriple]:
|
|
chain = LLMChain(llm=self.llm, prompt=self.knowledge_extraction_prompt)
|
|
buffer_string = get_buffer_string(
|
|
self.chat_memory.messages[-self.k * 2 :],
|
|
human_prefix=self.human_prefix,
|
|
ai_prefix=self.ai_prefix,
|
|
)
|
|
output = chain.predict(
|
|
history=buffer_string,
|
|
input=input_string,
|
|
verbose=True,
|
|
)
|
|
knowledge = parse_triples(output)
|
|
return knowledge
|
|
|
|
def _get_and_update_kg(self, inputs: Dict[str, Any]) -> None:
|
|
"""Get and update knowledge graph from the conversation history."""
|
|
prompt_input_key = self._get_prompt_input_key(inputs)
|
|
knowledge = self.get_knowledge_triplets(inputs[prompt_input_key])
|
|
for triple in knowledge:
|
|
self.kg.add_triple(triple)
|
|
|
|
def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None:
|
|
"""Save context from this conversation to buffer."""
|
|
super().save_context(inputs, outputs)
|
|
self._get_and_update_kg(inputs)
|
|
|
|
def clear(self) -> None:
|
|
"""Clear memory contents."""
|
|
super().clear()
|
|
self.kg.clear()
|
|
except ImportError:
|
|
# Placeholder object
|
|
class ConversationKGMemory: # type: ignore[no-redef]
|
|
pass
|